中文版 | English
题名

Transferable end-to-end aspect-based sentiment analysis with selective adversarial learning

作者
发表日期
2020
会议录名称
页码
4590-4600
摘要
Joint extraction of aspects and sentiments can be effectively formulated as a sequence labeling problem. However, such formulation hinders the effectiveness of supervised methods due to the lack of annotated sequence data in many domains. To address this issue, we firstly explore an unsupervised domain adaptation setting for this task. Prior work can only use common syntactic relations between aspect and opinion words to bridge the domain gaps, which highly relies on external linguistic resources. To resolve it, we propose a novel Selective Adversarial Learning (SAL) method to align the inferred correlation vectors that automatically capture their latent relations. The SAL method can dynamically learn an alignment weight for each word such that more important words can possess higher alignment weights to achieve fine-grained (word-level) adaptation. Empirically, extensive experiments demonstrate the effectiveness of the proposed SAL method.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20201908639116
EI主题词
Computational linguistics
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85084309273
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138313
专题工学院_计算机科学与工程系
作者单位
1.Hong Kong University of Science and Technology,Hong Kong
2.Chinese University of Hong Kong,Hong Kong
3.Tencent AI Lab,Shenzhen,China
4.R&D Center Singapore,Machine Intelligence Technology,Alibaba DAMO Academy,China
5.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Li,Zheng,Li,Xin,Wei,Ying,et al. Transferable end-to-end aspect-based sentiment analysis with selective adversarial learning[C],2020:4590-4600.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Zheng]的文章
[Li,Xin]的文章
[Wei,Ying]的文章
百度学术
百度学术中相似的文章
[Li,Zheng]的文章
[Li,Xin]的文章
[Wei,Ying]的文章
必应学术
必应学术中相似的文章
[Li,Zheng]的文章
[Li,Xin]的文章
[Wei,Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。