中文版 | English
题名

Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image

作者
通讯作者Gao,Shenghua; Cheng,Jun
DOI
发表日期
2020-04-01
会议名称
International Symposium on Biomedical Imaging
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-5386-9331-5
会议录名称
卷号
2020-April
页码
1227-1231
会议日期
3-7 April 2020
会议地点
Iowa City, IA, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

With the development of convolutional neural network, deep learning has shown its success for retinal disease detection from optical coherence tomography (OCT) images. However, deep learning often relies on large scale labelled data for training, which is oftentimes challenging especially for disease with low occurrence. Moreover, a deep learning system trained from data-set with one or a few diseases is unable to detect other unseen diseases, which limits the practical usage of the system in disease screening. To address the limitation, we propose a novel anomaly detection framework termed Sparsity-constrained Generative Adversarial Network (Sparse-GAN) for disease screening where only healthy data are available in the training set. The contributions of Sparse-GAN are two-folds: 1) The proposed Sparse-GAN predicts the anomalies in latent space rather than image-level; 2) Sparse-GAN is constrained by a novel Sparsity Regularization Net. Furthermore, in light of the role of lesions for disease screening, we present to leverage on an anomaly activation map to show the heatmap of lesions. We evaluate our proposed Sparse-GAN on a publicly available dataset, and the results show that the proposed method outperforms the state-of-the-art methods.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China (NSFC)[61932020]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000578080300252
EI入藏号
20202308794880
EI主题词
Computer vision ; Deep learning ; Optical tomography ; Learning systems ; Anomaly detection ; Diagnosis ; Convolutional neural networks ; Ophthalmology
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2 ; Optical Devices and Systems:741.3
Scopus记录号
2-s2.0-85085864535
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098374
引用统计
被引频次[WOS]:49
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138495
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.School of Information Science and Technology,ShanghaiTech University,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,China
3.UBTech Research,China
4.Southern University of Science and Technology,China
5.Inception Institute of Artificial Intelligence,China
推荐引用方式
GB/T 7714
Zhou,Kang,Gao,Shenghua,Cheng,Jun,et al. Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1227-1231.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Sparse-Gan_Sparsity-(2303KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Kang]的文章
[Gao,Shenghua]的文章
[Cheng,Jun]的文章
百度学术
百度学术中相似的文章
[Zhou,Kang]的文章
[Gao,Shenghua]的文章
[Cheng,Jun]的文章
必应学术
必应学术中相似的文章
[Zhou,Kang]的文章
[Gao,Shenghua]的文章
[Cheng,Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。