题名 | Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image |
作者 | |
通讯作者 | Gao,Shenghua; Cheng,Jun |
DOI | |
发表日期 | 2020-04-01
|
会议名称 | International Symposium on Biomedical Imaging
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-5386-9331-5
|
会议录名称 | |
卷号 | 2020-April
|
页码 | 1227-1231
|
会议日期 | 3-7 April 2020
|
会议地点 | Iowa City, IA, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | With the development of convolutional neural network, deep learning has shown its success for retinal disease detection from optical coherence tomography (OCT) images. However, deep learning often relies on large scale labelled data for training, which is oftentimes challenging especially for disease with low occurrence. Moreover, a deep learning system trained from data-set with one or a few diseases is unable to detect other unseen diseases, which limits the practical usage of the system in disease screening. To address the limitation, we propose a novel anomaly detection framework termed Sparsity-constrained Generative Adversarial Network (Sparse-GAN) for disease screening where only healthy data are available in the training set. The contributions of Sparse-GAN are two-folds: 1) The proposed Sparse-GAN predicts the anomalies in latent space rather than image-level; 2) Sparse-GAN is constrained by a novel Sparsity Regularization Net. Furthermore, in light of the role of lesions for disease screening, we present to leverage on an anomaly activation map to show the heatmap of lesions. We evaluate our proposed Sparse-GAN on a publicly available dataset, and the results show that the proposed method outperforms the state-of-the-art methods. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China (NSFC)[61932020]
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000578080300252
|
EI入藏号 | 20202308794880
|
EI主题词 | Computer vision
; Deep learning
; Optical tomography
; Learning systems
; Anomaly detection
; Diagnosis
; Convolutional neural networks
; Ophthalmology
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Vision:741.2
; Optical Devices and Systems:741.3
|
Scopus记录号 | 2-s2.0-85085864535
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098374 |
引用统计 |
被引频次[WOS]:49
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138495 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.School of Information Science and Technology,ShanghaiTech University,China 2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,China 3.UBTech Research,China 4.Southern University of Science and Technology,China 5.Inception Institute of Artificial Intelligence,China |
推荐引用方式 GB/T 7714 |
Zhou,Kang,Gao,Shenghua,Cheng,Jun,et al. Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1227-1231.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Sparse-Gan_Sparsity-(2303KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论