题名 | Automated Hemorrhage Detection from Coarsely Annotated Fundus Images in Diabetic Retinopathy |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2020-04-01
|
会议名称 | 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-5386-9331-5
|
会议录名称 | |
卷号 | 2020-April
|
页码 | 1369-1372
|
会议日期 | 2020
|
会议地点 | Iowa City, IA, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, we proposed and validated a novel and effective pipeline for automatically detecting hemorrhage from coarsely-annotated fundus images in diabetic retinopathy. The proposed framework consisted of three parts: image pre-processing, training data refining, and object detection using a convolutional neural network with label smoothing. Contrast limited adaptive histogram equalization and adaptive gamma correction with weighting distribution were adopted to improve image quality by enhancing image contrast and correcting image illumination. To refine coarsely-annotated training data, we designed a bounding box refining network (BBR-net) to provide more accurate bounding box annotations. Combined with label smoothing, RetinaNet was implemented to alleviate mislabeling issues and automatically detect hemorrhages. The proposed method was trained and evaluated on a publicly available IDRiD dataset and also one of our private datasets This dataset will be released soon.. Experimental results showed that our BBR-net could effectively refine manually-delineated coarse hemorrhage annotations, with the average IoU being 0.8715 when compared with well-annotated bounding boxes. The proposed hemorrhage detection pipeline was compared to pure RetinaNet and superior performance was observed. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[2017YFC0112404]
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000578080300286
|
EI入藏号 | 20202308795075
|
EI主题词 | Object detection
; Computer vision
; Eye protection
; Image annotation
; Refining
; Data handling
; Pipelines
|
EI分类号 | Pipe, Piping and Pipelines:619.1
; Data Processing and Image Processing:723.2
; Computer Applications:723.5
; Vision:741.2
; Accidents and Accident Prevention:914.1
|
Scopus记录号 | 2-s2.0-85085863574
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098319 |
引用统计 |
被引频次[WOS]:23
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138497 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China 3.State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Centre,Sun Yat-sen University,Guangzhou,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Huang,Yijin,Lin,Li,Li,Meng,et al. Automated Hemorrhage Detection from Coarsely Annotated Fundus Images in Diabetic Retinopathy[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1369-1372.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Automated Hemorrhage(3041KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论