中文版 | English
题名

Automated Hemorrhage Detection from Coarsely Annotated Fundus Images in Diabetic Retinopathy

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2020-04-01
会议名称
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-5386-9331-5
会议录名称
卷号
2020-April
页码
1369-1372
会议日期
2020
会议地点
Iowa City, IA, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

In this paper, we proposed and validated a novel and effective pipeline for automatically detecting hemorrhage from coarsely-annotated fundus images in diabetic retinopathy. The proposed framework consisted of three parts: image pre-processing, training data refining, and object detection using a convolutional neural network with label smoothing. Contrast limited adaptive histogram equalization and adaptive gamma correction with weighting distribution were adopted to improve image quality by enhancing image contrast and correcting image illumination. To refine coarsely-annotated training data, we designed a bounding box refining network (BBR-net) to provide more accurate bounding box annotations. Combined with label smoothing, RetinaNet was implemented to alleviate mislabeling issues and automatically detect hemorrhages. The proposed method was trained and evaluated on a publicly available IDRiD dataset and also one of our private datasets This dataset will be released soon.. Experimental results showed that our BBR-net could effectively refine manually-delineated coarse hemorrhage annotations, with the average IoU being 0.8715 when compared with well-annotated bounding boxes. The proposed hemorrhage detection pipeline was compared to pure RetinaNet and superior performance was observed.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D Program of China[2017YFC0112404]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000578080300286
EI入藏号
20202308795075
EI主题词
Object detection ; Computer vision ; Eye protection ; Image annotation ; Refining ; Data handling ; Pipelines
EI分类号
Pipe, Piping and Pipelines:619.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2 ; Accidents and Accident Prevention:914.1
Scopus记录号
2-s2.0-85085863574
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098319
引用统计
被引频次[WOS]:23
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138497
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China
3.State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Centre,Sun Yat-sen University,Guangzhou,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Huang,Yijin,Lin,Li,Li,Meng,et al. Automated Hemorrhage Detection from Coarsely Annotated Fundus Images in Diabetic Retinopathy[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1369-1372.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Automated Hemorrhage(3041KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Yijin]的文章
[Lin,Li]的文章
[Li,Meng]的文章
百度学术
百度学术中相似的文章
[Huang,Yijin]的文章
[Lin,Li]的文章
[Li,Meng]的文章
必应学术
必应学术中相似的文章
[Huang,Yijin]的文章
[Lin,Li]的文章
[Li,Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。