题名 | SUNet: A Lesion Regularized Model for Simultaneous Diabetic Retinopathy and Diabetic Macular Edema Grading |
作者 | |
DOI | |
发表日期 | 2020-04-01
|
会议名称 | 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-5386-9331-5
|
会议录名称 | |
卷号 | 2020-April
|
页码 | 1378-1382
|
会议日期 | 3-7 April 2020
|
会议地点 | Iowa City, IA, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Diabetic retinopathy (DR), as a leading ocular disease, is often with a complication of diabetic macular edema (DME). However, most existing works only aim at DR grading but ignore the DME diagnosis, but doctors will do both tasks simultaneously. In this paper, motivated by the advantages of multi-task learning for image classification, and to mimic the behavior of clinicians in visual inspection for patients, we propose a feature Separation and Union Network (SUNet) for simultaneous DR and DME grading. Further, to improve the interpretability of the disease grading, a lesion regularizer is also imposed to regularize our network. Specifically, given an image, our SUNet first extracts a common feature for both DR and DME grading and lesion detection. Then a feature blending block is introduced which alternately uses feature separation and feature union for task-specific feature extraction, where feature separation learns task-specific features for lesion detection and DR and DME grading, and feature union aggregates features corresponding to lesion detection, DR and DME grading. In this way, we can distill the irrelevant features and leverage features of different but related tasks to improve the performance of each given task. Then the task-specific features of the same task at different feature separation steps are concatenated for the prediction of each task. Extensive experiments on the very challenging IDRiD dataset demonstrate that our SUNet significantly outperforms existing methods for both DR and DME grading. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China (NSFC)[61932020]
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000578080300282
|
EI入藏号 | 20202308794826
|
EI主题词 | Computer vision
; Diagnosis
; Feature extraction
; Eye protection
; Separation
|
EI分类号 | Medicine and Pharmacology:461.6
; Computer Applications:723.5
; Vision:741.2
; Chemical Operations:802.3
; Accidents and Accident Prevention:914.1
|
Scopus记录号 | 2-s2.0-85085862298
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098673 |
引用统计 |
被引频次[WOS]:24
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138498 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.ShanghaiTech University,China 2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences, 3.Inception Institute of Artificial Intelligence, 4.Southern University of Science and Technology, 5.UBTech Research, |
推荐引用方式 GB/T 7714 |
Tu,Zhi,Gao,Shenghua,Zhou,Kang,et al. SUNet: A Lesion Regularized Model for Simultaneous Diabetic Retinopathy and Diabetic Macular Edema Grading[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1378-1382.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
SUNet_A_Lesion_Regul(2147KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论