中文版 | English
题名

SUNet: A Lesion Regularized Model for Simultaneous Diabetic Retinopathy and Diabetic Macular Edema Grading

作者
DOI
发表日期
2020-04-01
会议名称
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-5386-9331-5
会议录名称
卷号
2020-April
页码
1378-1382
会议日期
3-7 April 2020
会议地点
Iowa City, IA, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Diabetic retinopathy (DR), as a leading ocular disease, is often with a complication of diabetic macular edema (DME). However, most existing works only aim at DR grading but ignore the DME diagnosis, but doctors will do both tasks simultaneously. In this paper, motivated by the advantages of multi-task learning for image classification, and to mimic the behavior of clinicians in visual inspection for patients, we propose a feature Separation and Union Network (SUNet) for simultaneous DR and DME grading. Further, to improve the interpretability of the disease grading, a lesion regularizer is also imposed to regularize our network. Specifically, given an image, our SUNet first extracts a common feature for both DR and DME grading and lesion detection. Then a feature blending block is introduced which alternately uses feature separation and feature union for task-specific feature extraction, where feature separation learns task-specific features for lesion detection and DR and DME grading, and feature union aggregates features corresponding to lesion detection, DR and DME grading. In this way, we can distill the irrelevant features and leverage features of different but related tasks to improve the performance of each given task. Then the task-specific features of the same task at different feature separation steps are concatenated for the prediction of each task. Extensive experiments on the very challenging IDRiD dataset demonstrate that our SUNet significantly outperforms existing methods for both DR and DME grading.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China (NSFC)[61932020]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000578080300282
EI入藏号
20202308794826
EI主题词
Computer vision ; Diagnosis ; Feature extraction ; Eye protection ; Separation
EI分类号
Medicine and Pharmacology:461.6 ; Computer Applications:723.5 ; Vision:741.2 ; Chemical Operations:802.3 ; Accidents and Accident Prevention:914.1
Scopus记录号
2-s2.0-85085862298
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098673
引用统计
被引频次[WOS]:24
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138498
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.ShanghaiTech University,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,
3.Inception Institute of Artificial Intelligence,
4.Southern University of Science and Technology,
5.UBTech Research,
推荐引用方式
GB/T 7714
Tu,Zhi,Gao,Shenghua,Zhou,Kang,et al. SUNet: A Lesion Regularized Model for Simultaneous Diabetic Retinopathy and Diabetic Macular Edema Grading[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1378-1382.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
SUNet_A_Lesion_Regul(2147KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tu,Zhi]的文章
[Gao,Shenghua]的文章
[Zhou,Kang]的文章
百度学术
百度学术中相似的文章
[Tu,Zhi]的文章
[Gao,Shenghua]的文章
[Zhou,Kang]的文章
必应学术
必应学术中相似的文章
[Tu,Zhi]的文章
[Gao,Shenghua]的文章
[Zhou,Kang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。