中文版 | English
题名

Deep Learning and Unsupervised Fuzzy C-Means Based Level-Set Segmentation for Liver Tumor

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2020-04-01
会议名称
Proceedings - International Symposium on Biomedical Imaging
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-5386-9331-5
会议录名称
卷号
2020-April
页码
1193-1196
会议日期
2020-04
会议地点
Iowa City, Iowa, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

In this paper, we propose and validate a novel level-set method integrating an enhanced edge indicator and an automatically derived initial curve for CT based liver tumor segmentation. In the beginning, a 2D U-net is used to localize the liver and a 3D fully convolutional network (FCN) is used to refine the liver segmentation as well as to localize the tumor. The refined liver segmentation is used to remove non-liver tissues for subsequent tumor segmentation. Given that the tumor segmentation obtained from the aforementioned 3D FCN is typically imperfect, we adopt a novel level-set method to further improve the tumor segmentation. Specifically, the probabilistic distribution of the liver tumor is estimated using fuzzy c- means clustering and then utilized to enhance the object indication function used in level-set. The proposed segmentation pipeline was found to have an outstanding performance in terms of both liver and liver tumor.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D Program of China[2017YFC0112404]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000578080300243
EI入藏号
20202308794853
EI主题词
Convolution ; Probability distributions ; Fuzzy neural networks ; Drop breakup ; Numerical methods ; Convolutional neural networks ; Fuzzy inference ; Fuzzy systems ; Deep learning ; Level measurement
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Mechanical Variables Measurements:943.2 ; Systems Science:961
Scopus记录号
2-s2.0-85085860436
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098701
引用统计
被引频次[WOS]:10
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138499
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,University of Hong Kong,Hong Kong,
3.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China
4.School of Electronics and Information Technology,Harbin Institute of Technology,Shenzhen,China
5.School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhang,Yue,Wu,Jiong,Jiang,Benxiang,et al. Deep Learning and Unsupervised Fuzzy C-Means Based Level-Set Segmentation for Liver Tumor[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1193-1196.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Deep Learning and Un(1462KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Jiang,Benxiang]的文章
百度学术
百度学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Jiang,Benxiang]的文章
必应学术
必应学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Jiang,Benxiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。