题名 | Deep Learning and Unsupervised Fuzzy C-Means Based Level-Set Segmentation for Liver Tumor |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2020-04-01
|
会议名称 | Proceedings - International Symposium on Biomedical Imaging
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-5386-9331-5
|
会议录名称 | |
卷号 | 2020-April
|
页码 | 1193-1196
|
会议日期 | 2020-04
|
会议地点 | Iowa City, Iowa, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, we propose and validate a novel level-set method integrating an enhanced edge indicator and an automatically derived initial curve for CT based liver tumor segmentation. In the beginning, a 2D U-net is used to localize the liver and a 3D fully convolutional network (FCN) is used to refine the liver segmentation as well as to localize the tumor. The refined liver segmentation is used to remove non-liver tissues for subsequent tumor segmentation. Given that the tumor segmentation obtained from the aforementioned 3D FCN is typically imperfect, we adopt a novel level-set method to further improve the tumor segmentation. Specifically, the probabilistic distribution of the liver tumor is estimated using fuzzy c- means clustering and then utilized to enhance the object indication function used in level-set. The proposed segmentation pipeline was found to have an outstanding performance in terms of both liver and liver tumor. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[2017YFC0112404]
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000578080300243
|
EI入藏号 | 20202308794853
|
EI主题词 | Convolution
; Probability distributions
; Fuzzy neural networks
; Drop breakup
; Numerical methods
; Convolutional neural networks
; Fuzzy inference
; Fuzzy systems
; Deep learning
; Level measurement
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Artificial Intelligence:723.4
; Expert Systems:723.4.1
; Numerical Methods:921.6
; Probability Theory:922.1
; Physical Properties of Gases, Liquids and Solids:931.2
; Mechanical Variables Measurements:943.2
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85085860436
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098701 |
引用统计 |
被引频次[WOS]:10
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138499 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.Department of Electrical and Electronic Engineering,University of Hong Kong,Hong Kong, 3.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China 4.School of Electronics and Information Technology,Harbin Institute of Technology,Shenzhen,China 5.School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Yue,Wu,Jiong,Jiang,Benxiang,et al. Deep Learning and Unsupervised Fuzzy C-Means Based Level-Set Segmentation for Liver Tumor[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1193-1196.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Deep Learning and Un(1462KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论