中文版 | English
题名

Open-Set OCT Image Recognition with Synthetic Learning

作者
DOI
发表日期
2020-04-01
会议名称
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-5386-9331-5
会议录名称
卷号
2020-April
页码
1788-1792
会议日期
3-7 April 2020
会议地点
Iowa City, IA, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Due to new eye diseases discovered every year, doctors may encounter some rare or unknown diseases. Similarly, in medical image recognition field, many practical medical classification tasks may encounter the case where some testing samples belong to some rare or unknown classes that have never been observed or included in the training set, which is termed as an open-set problem. As rare diseases samples are difficult to be obtained and included in the training set, it is reasonable to design an algorithm that recognizes both known and unknown diseases. Towards this end, this paper leverages a novel generative adversarial network (GAN) based synthetic learning for open-set retinal optical coherence tomography (OCT) image recognition. Specifically, we first train an auto-encoder GAN and a classifier to reconstruct and classify the observed images, respectively. Then a subspace-constrained synthesis loss is introduced to generate images that locate near the boundaries of the subspace of images corresponding to each observed disease, meanwhile, these images cannot be classified by the pre-trained classifier. In other words, these synthesized images are categorized into an unknown class. In this way, we can generate images belonging to the unknown class, and add them into the original dataset to retrain the classifier for the unknown disease discovery.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China (NSFC)[61932020]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000578080300373
EI入藏号
20202308795076
EI主题词
Image classification ; Optical tomography ; Classification (of information) ; Image recognition ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85085856767
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9098320
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138500
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.ShanghaiTech University,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,China
3.UBTech Research,
4.Southern University of Science and Technology,
推荐引用方式
GB/T 7714
Xiao,Yuting,Gao,Shenghua,Chai,Zhengjie,et al. Open-Set OCT Image Recognition with Synthetic Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1788-1792.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Open-Set_OCT_Image_R(715KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Yuting]的文章
[Gao,Shenghua]的文章
[Chai,Zhengjie]的文章
百度学术
百度学术中相似的文章
[Xiao,Yuting]的文章
[Gao,Shenghua]的文章
[Chai,Zhengjie]的文章
必应学术
必应学术中相似的文章
[Xiao,Yuting]的文章
[Gao,Shenghua]的文章
[Chai,Zhengjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。