题名 | Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients |
作者 | |
通讯作者 | Sun, Jun |
发表日期 | 2019
|
ISSN | 1049-5258
|
会议录名称 | |
卷号 | 32
|
出版地 | 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
|
出版者 | |
摘要 | The present paper develops a novel aggregated gradient approach for distributed machine learning that adaptively compresses the gradient communication. The key idea is to first quantize the computed gradients, and then skip less informative quantized gradient communications by reusing outdated gradients. Quantizing and skipping result in 'lazy' worker-server communications, which justifies the term Lazily Aggregated Quantized gradient that is henceforth abbreviated as LAQ. Our LAQ can provably attain the same linear convergence rate as the gradient descent in the strongly convex case, while effecting major savings in the communication overhead both in transmitted bits as well as in communication rounds. Empirically, experiments with real data corroborate a significant communication reduction compared to existing gradient- and stochastic gradient-based algorithms. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Committee on Science and Innovations[GJHZ20180411143603361]
; Department of Science and Technology of Guangdong Province[2018A050506003]
; Natural Science Foundation of China[61873118]
; NSF[1500713][1711471]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000534424303037
|
EI入藏号 | 20203609141360
|
EI主题词 | Gradient methods
|
EI分类号 | Control Systems:731.1
; Numerical Methods:921.6
; Systems Science:961
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/139966 |
专题 | 南方科技大学 |
作者单位 | 1.Zhejiang Univ, Hangzhou 310027, Peoples R China 2.Rensselaer Polytech Inst, Troy, NY 12180 USA 3.Univ Minnesota, Minneapolis, MN 55455 USA 4.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Sun, Jun,Chen, Tianyi,Giannakis, Georgios B.,et al. Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2019.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论