中文版 | English
题名

Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients

作者
通讯作者Sun, Jun
发表日期
2019
ISSN
1049-5258
会议录名称
卷号
32
出版地
10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
出版者
摘要
The present paper develops a novel aggregated gradient approach for distributed machine learning that adaptively compresses the gradient communication. The key idea is to first quantize the computed gradients, and then skip less informative quantized gradient communications by reusing outdated gradients. Quantizing and skipping result in 'lazy' worker-server communications, which justifies the term Lazily Aggregated Quantized gradient that is henceforth abbreviated as LAQ. Our LAQ can provably attain the same linear convergence rate as the gradient descent in the strongly convex case, while effecting major savings in the communication overhead both in transmitted bits as well as in communication rounds. Empirically, experiments with real data corroborate a significant communication reduction compared to existing gradient- and stochastic gradient-based algorithms.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Committee on Science and Innovations[GJHZ20180411143603361] ; Department of Science and Technology of Guangdong Province[2018A050506003] ; Natural Science Foundation of China[61873118] ; NSF[1500713][1711471]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000534424303037
EI入藏号
20203609141360
EI主题词
Gradient methods
EI分类号
Control Systems:731.1 ; Numerical Methods:921.6 ; Systems Science:961
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/139966
专题南方科技大学
作者单位
1.Zhejiang Univ, Hangzhou 310027, Peoples R China
2.Rensselaer Polytech Inst, Troy, NY 12180 USA
3.Univ Minnesota, Minneapolis, MN 55455 USA
4.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Sun, Jun,Chen, Tianyi,Giannakis, Georgios B.,et al. Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2019.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Jun]的文章
[Chen, Tianyi]的文章
[Giannakis, Georgios B.]的文章
百度学术
百度学术中相似的文章
[Sun, Jun]的文章
[Chen, Tianyi]的文章
[Giannakis, Georgios B.]的文章
必应学术
必应学术中相似的文章
[Sun, Jun]的文章
[Chen, Tianyi]的文章
[Giannakis, Georgios B.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。