中文版 | English
题名

RoSANE: Robust and scalable attributed network embedding for sparse networks

作者
通讯作者He,Shan
发表日期
2020-10-07
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号409页码:231-243
摘要
Attributed networks can better describe the real-world complex systems where the interaction or relationship between entities can be represented as networks and the auxiliary information can be represented as node attributes. Attributed Network Embedding (ANE) is attracting much attention. It utilizes network topology and node attributes to jointly learn enhanced low-dimensional node embeddings so as to facilitate various downstream inference tasks. However, the existing ANE methods cannot effectively embed attributed sparse networks which are important real-world scenarios, and/or are not scalable to large-scale networks. To tackle these challenges, we first integrate network topology and node attributes to reconstruct an enriched denser network, and then learn node embeddings upon the denser network. In above two steps, the techniques such as Ball-tree K-Nearest Neighbors and random walks based Skip-Gram model are adopted to guarantee the scalability, which is demonstrated via theoretical complexity analysis. The extensive empirical studies show the effectiveness and efficiency of the proposed method, as well as its robustness to different networks or the same network with different sparsities.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Natural Science Foundation of China[61672478] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000562543100019
出版者
EI入藏号
20202508851862
EI主题词
Complex networks ; Network topology ; Forestry ; Nearest neighbor search ; Random processes
EI分类号
Electric Networks:703.1 ; Computer Systems and Equipment:722 ; Artificial Intelligence:723.4 ; Agricultural Equipment and Methods; Vegetation and Pest Control:821 ; Optimization Techniques:921.5 ; Probability Theory:922.1
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85086571387
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/140310
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Computer Science,University of Birmingham,Birmingham,United Kingdom
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hou,Chengbin,He,Shan,Tang,Ke. RoSANE: Robust and scalable attributed network embedding for sparse networks[J]. NEUROCOMPUTING,2020,409:231-243.
APA
Hou,Chengbin,He,Shan,&Tang,Ke.(2020).RoSANE: Robust and scalable attributed network embedding for sparse networks.NEUROCOMPUTING,409,231-243.
MLA
Hou,Chengbin,et al."RoSANE: Robust and scalable attributed network embedding for sparse networks".NEUROCOMPUTING 409(2020):231-243.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hou,Chengbin]的文章
[He,Shan]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Hou,Chengbin]的文章
[He,Shan]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Hou,Chengbin]的文章
[He,Shan]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。