中文版 | English
题名

Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission

作者
通讯作者Zhang,Haoran
发表日期
2020-10-10
DOI
发表期刊
ISSN
0959-6526
EISSN
1879-1786
卷号270
摘要
The on-road braking emission has been proved by former studies to account for a considerable part of on-road transportation. To improve cleaner air in urban area, the spatio-temporal analysis on emission performance of on-road braking is necessary as a guideline for decision-making. In this paper, we propose a framework for analysis on the particle matter emission of on-road vehicle braking events on an urban scale. We used massive vehicle trajectories in Tokyo area with short time interval as the database for analysis. From the result, we found that within the in the study area, the average driving distance during braking takes up about 20.60% of total driving distance. The average quantity of PM10 emission from braking for each driving trajectory is 14.09 mg and the one from exhaust emission is 35.36 mg. The emission from braking can averagely occupy 39.85% of exhaust emission. What's more, in our finding, the braking emission from heavy duty vehicle is 2.33 times of light duty vehicle. From the spatial distribution of PM10 braking emission, we found that braking emission usually happened in the city center and popular crowded areas due to the large traffic volume, as well as the main trunk roads of capital expressway or highway. We also found a different spatial pattern between the light duty vehicle and heavy-duty vehicle. In temporal change, we found that rapid peaks during the rush hour on weekday and contrastive stabilization on weekend. We believe our finding can provide a clearer pattern and understanding on the emission behavior of on-road vehicle braking.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Science & Technology - Other Topics ; Engineering ; Environmental Sciences & Ecology
WOS类目
Green & Sustainable Science & Technology ; Engineering, Environmental ; Environmental Sciences
WOS记录号
WOS:000579071300096
出版者
EI入藏号
20202708889917
EI主题词
Global positioning system ; Roads and streets ; Decision making ; Vehicles ; Air cleaners
EI分类号
Roads and Streets:406.2 ; Air Pollution Control:451.2 ; Data Processing and Image Processing:723.2 ; Management:912.2
Scopus记录号
2-s2.0-85087107467
来源库
Scopus
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/140497
专题工学院_计算机科学与工程系
作者单位
1.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,Southern University of Science and Technology(SUSTech),Shenzhen,China
2.Center for Spatial Information Science,The University of Tokyo,Chiba,5-1-5 Kashiwanoha, Kashiwa-shi,277-8568,Japan
3.Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai,4800 Cao'an Road,201804,China
4.College of Computer Science and Technology,Qingdao University,Qingdao,Ningxia Road No. 308,266071,China
5.Institute of Smart City and Big Data Technology,Qingdao,Qingdao,Ningxia Road No. 308,266071,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Jinyu,Li,Wenjing,Zhang,Haoran,et al. Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission[J]. Journal of Cleaner Production,2020,270.
APA
Chen,Jinyu.,Li,Wenjing.,Zhang,Haoran.,Jiang,Wenxiao.,Li,Weifeng.,...&Shibasaki,Ryosuke.(2020).Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission.Journal of Cleaner Production,270.
MLA
Chen,Jinyu,et al."Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission".Journal of Cleaner Production 270(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Jinyu]的文章
[Li,Wenjing]的文章
[Zhang,Haoran]的文章
百度学术
百度学术中相似的文章
[Chen,Jinyu]的文章
[Li,Wenjing]的文章
[Zhang,Haoran]的文章
必应学术
必应学术中相似的文章
[Chen,Jinyu]的文章
[Li,Wenjing]的文章
[Zhang,Haoran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。