中文版 | English
题名

Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis

作者
通讯作者Zhang,Jin
发表日期
2020-04-01
发表期刊
ISSN
1532-4435
EISSN
1533-7928
卷号21
摘要

Despite the rich literature, the linear convergence of alternating direction method of multipliers (ADMM) has not been fully understood even for the convex case. For example, the linear convergence of ADMM can be empirically observed in a wide range of applications arising in statistics, machine learning, and related areas, while existing theoretical results seem to be too stringent to be satisfied or too ambiguous to be checked and thus why the ADMM performs linear convergence for these applications still seems to be unclear. In this paper, we systematically study the local linear convergence of ADMM in the context of convex optimization through the lens of variational analysis. We show that the local linear convergence of ADMM can be guaranteed without the strong convexity of objective functions together with the full rank assumption of the coefficient matrices, or the full polyhedricity assumption of their subdifferential; and it is possible to discern the local linear convergence for various concrete applications, especially for some representative models arising in statistical learning. We use some variational analysis techniques sophisticatedly; and our analysis is conducted in the most general proximal version of ADMM with Fortin and Glowinski’s larger step size so that all major variants of the ADMM known in the literature are covered.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Hong Kong Research Grants Council[12302318] ; National Science Foundation of China[11971220] ; [2019A1515011152]
WOS研究方向
Automation & Control Systems ; Computer Science
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence
WOS记录号
WOS:000542194600006
出版者
EI入藏号
20202708893859
EI主题词
Machine learning ; Variational techniques
EI分类号
Artificial Intelligence:723.4 ; Calculus:921.2
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85087198884
来源库
Scopus
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/140540
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.Department of Mathematics,University of Hong Kong,Hong Kong SAR,China
2.Department of Mathematics SUSTech International Center for Mathematics,Southern University of Science and Technology,National Center for Applied Mathematics Shenzhen,Shenzhen, Guangdong,China
通讯作者单位数学系;  深圳国家应用数学中心;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Yuan,Xiaoming,Zeng,Shangzhi,Zhang,Jin. Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis[J]. JOURNAL OF MACHINE LEARNING RESEARCH,2020,21.
APA
Yuan,Xiaoming,Zeng,Shangzhi,&Zhang,Jin.(2020).Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis.JOURNAL OF MACHINE LEARNING RESEARCH,21.
MLA
Yuan,Xiaoming,et al."Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis".JOURNAL OF MACHINE LEARNING RESEARCH 21(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan,Xiaoming]的文章
[Zeng,Shangzhi]的文章
[Zhang,Jin]的文章
百度学术
百度学术中相似的文章
[Yuan,Xiaoming]的文章
[Zeng,Shangzhi]的文章
[Zhang,Jin]的文章
必应学术
必应学术中相似的文章
[Yuan,Xiaoming]的文章
[Zeng,Shangzhi]的文章
[Zhang,Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。