题名 | Three-terminal Weyl complex with double surface arcs in a cubic lattice |
作者 | |
通讯作者 | Xu,Hu |
发表日期 | 2020-12-01
|
DOI | |
发表期刊 | |
ISSN | 2057-3960
|
EISSN | 2057-3960
|
卷号 | 6期号:1 |
摘要 | Exploring unconventional topological quasiparticles and their associated exotic physical properties has become a hot topic in condensed matter physics, thus stimulating extensive interest in recent years. Here, in contrast to the double-Weyl phonons (the topological chiral charge +2) in the trigonal and hexagonal crystal systems, we propose that the unconventional double-Weyl without counterparts in high-energy physics can emerge in the phonons of cubic structures, i.e., SrSi. Employing a two-band k ⋅ p Hamiltonian, we prove that the quadratic double-Weyl nodes are protected by the fourfold screw rotational symmetry C̃ . Strikingly, we find that the surface arcs are terminated with the Weyl nodes that possess unequal topological charges with opposite sign (i.e., +2 and −1), leading to unique three-terminal Weyl complex (one quadratic double-Weyl and two linear single-Weyl) with double surface arcs in SrSi. In addition, we apply a uniaxial tensile strain along z-axis to examine the evolution of the three-terminal Weyl complex when the corresponding symmetries are broken. Our work not only provides an ideal candidate for the realization of the quadratic double-Weyl and the corresponding unique surface arc states, but also broadens the understanding of topological Weyl physics. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Guangdong Natural Science Funds for Distinguished Young Scholars[2017B030306008]
; National Natural Science Foundation of China[11974160][11674148][11334003]
; China Postdoctoral Science Foundation[2019M652686]
; Natural Science Basic Research Plan in Shaanxi Province of China[2018JQ1083]
|
WOS研究方向 | Chemistry
; Materials Science
|
WOS类目 | Chemistry, Physical
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000548906000001
|
出版者 | |
EI入藏号 | 20202808905056
|
EI主题词 | Phonons
; High energy physics
; Tensile strain
; Crystal structure
|
EI分类号 | Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Mechanics:931.1
; High Energy Physics:932.1
; Crystal Lattice:933.1.1
|
Scopus记录号 | 2-s2.0-85087394879
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:30
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/140686 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Department of Physics & Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Physics,The Hong Kong University of Science and Technology,Clear Water Bay,Hong Kong 3.Department of Physics,South China University of Technology,Guangzhou,510640,China 4.College of Physics and Optoelectronic Technology & Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center,Baoji University of Arts and Sciences,Baoji,721016,China 5.Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 物理系; 量子科学与工程研究院 |
通讯作者单位 | 物理系; 量子科学与工程研究院; 南方科技大学 |
第一作者的第一单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Huang,Zhenqiao,Chen,Zhongjia,Zheng,Baobing,et al. Three-terminal Weyl complex with double surface arcs in a cubic lattice[J]. npj Computational Materials,2020,6(1).
|
APA |
Huang,Zhenqiao,Chen,Zhongjia,Zheng,Baobing,&Xu,Hu.(2020).Three-terminal Weyl complex with double surface arcs in a cubic lattice.npj Computational Materials,6(1).
|
MLA |
Huang,Zhenqiao,et al."Three-terminal Weyl complex with double surface arcs in a cubic lattice".npj Computational Materials 6.1(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论