中文版 | English
题名

Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning

作者
通讯作者Qin, Wenjian; Luo, Weiren
发表日期
2020-08
DOI
发表期刊
ISSN
0002-9440
EISSN
1525-2191
卷号190期号:8页码:1691-1700
摘要
The pathologic diagnosis of nasopharyngeal carcinoma (NPC) by different pathologists is often inefficient and inconsistent. We have therefore introduced a deep learning algorithm into this process and compared the performance of the model with that of three pathologists with different levels of experience to demonstrate its clinical value. In this retrospective study, a total of 1970 whole slide images of 731 cases were collected and divided into training, validation, and testing sets. Inception-v3, which is a state-of-the-art convolutional neural network, was trained to classify images into three categories: chronic nasopharyngeal inflammation, lymphoid hyperplasia, and NPC. The mean area under the curve (AUC) of the deep learning model is 0.936 based on the testing set, and its AUCs for the three image categories are 0.905, 0.972, and 0.930, respectively. In the comparison with the three pathologists, the model outperforms the junior and intermediate pathologists, and has only a slightly lower performance than the senior pathologist when considered in terms of accuracy, specificity, sensitivity, AUC, and consistency. To our knowledge, this is the first study about the application of deep learning to NPC pathologic diagnosis. In clinical practice, the deep learning model can potentially assist pathologists by providing a second opinion on their NPC diagnoses.
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[61901463][81872202] ; Shenzhen Science and Technology Program of China[JCYJ20170818160306270] ; Natural Science Foundation of Guangdong Province[2015A030313263][2018A030313778] ; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research[2017B030301018]
WOS研究方向
Pathology
WOS类目
Pathology
WOS记录号
WOS:000552675100011
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:27
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/141352
专题南方科技大学第二附属医院
南方科技大学第一附属医院
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Peoples Hosp 3, Affiliated Hosp 2, Natl Clin Res Ctr Infect Dis,Canc Res Inst,Dept P, 29 Bulan Rd, Shenzhen 518112, Peoples R China
3.Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen, Peoples R China
4.Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China
通讯作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Diao, Songhui,Hou, Jiaxin,Yu, Hong,et al. Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning[J]. AMERICAN JOURNAL OF PATHOLOGY,2020,190(8):1691-1700.
APA
Diao, Songhui.,Hou, Jiaxin.,Yu, Hong.,Zhao, Xia.,Sun, Yikang.,...&Luo, Weiren.(2020).Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning.AMERICAN JOURNAL OF PATHOLOGY,190(8),1691-1700.
MLA
Diao, Songhui,et al."Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning".AMERICAN JOURNAL OF PATHOLOGY 190.8(2020):1691-1700.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Diao, Songhui]的文章
[Hou, Jiaxin]的文章
[Yu, Hong]的文章
百度学术
百度学术中相似的文章
[Diao, Songhui]的文章
[Hou, Jiaxin]的文章
[Yu, Hong]的文章
必应学术
必应学术中相似的文章
[Diao, Songhui]的文章
[Hou, Jiaxin]的文章
[Yu, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。