题名 | Optimizing adiabatic quantum pathways via a learning algorithm |
作者 | |
通讯作者 | Li, Jun; Peng, Xinhua |
发表日期 | 2020-07-16
|
DOI | |
发表期刊 | |
ISSN | 1050-2947
|
EISSN | 1094-1622
|
卷号 | 102期号:1 |
摘要 | Designing proper time-dependent control fields for slowly varying the system to the ground state that encodes the problem solution is crucial for adiabatic quantum computation. However, inevitable perturbations in real applications demand us to accelerate the evolution so that the adiabatic errors can be prevented from accumulation. Here, by treating this trade-off task as a multiobjective optimization problem, we propose a gradient-free learning algorithm with pulse smoothing technique to search optimal adiabatic quantum pathways and apply it to the Landau-Zener Hamiltonian and Grover search Hamiltonian. Numerical comparisons with a linear schedule, local adiabatic theorem induced schedule, and gradient-based algorithm searched schedule reveal that the proposed method can achieve significant performance improvements in terms of the adiabatic time and the instantaneous ground-state population maintenance. The proposed method can be used to solve more complex and real adiabatic quantum computation problems. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key Research and Development Program of China[2018YFA0306600]
; National Natural Science Foundation of China[11975117][11605005][11875159][U1801661]
; Anhui Initiative in Quantum Information Technologies[AHY050000]
; Guangdong Provincial Key Laboratory[2019B121203002]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000550189300003
|
出版者 | |
EI入藏号 | 20203108989224
|
EI主题词 | Economic and social effects
; Hamiltonians
; Population statistics
; Scheduling
; Quantum computers
; Computation theory
; Computational efficiency
; Multiobjective optimization
; Quantum theory
; Learning algorithms
; Numerical methods
; Scheduling algorithms
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Computer Systems and Equipment:722
; Machine Learning:723.4.2
; Management:912.2
; Optimization Techniques:921.5
; Numerical Methods:921.6
; Quantum Theory; Quantum Mechanics:931.4
; Social Sciences:971
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/141395 |
专题 | 量子科学与工程研究院 |
作者单位 | 1.Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China 2.Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China 3.Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China 4.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 5.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 6.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China |
通讯作者单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Yang, Xiaodongvi,Liu, Ran,Li, Jun,et al. Optimizing adiabatic quantum pathways via a learning algorithm[J]. PHYSICAL REVIEW A,2020,102(1).
|
APA |
Yang, Xiaodongvi,Liu, Ran,Li, Jun,&Peng, Xinhua.(2020).Optimizing adiabatic quantum pathways via a learning algorithm.PHYSICAL REVIEW A,102(1).
|
MLA |
Yang, Xiaodongvi,et al."Optimizing adiabatic quantum pathways via a learning algorithm".PHYSICAL REVIEW A 102.1(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论