中文版 | English
题名

Optimizing adiabatic quantum pathways via a learning algorithm

作者
通讯作者Li, Jun; Peng, Xinhua
发表日期
2020-07-16
DOI
发表期刊
ISSN
1050-2947
EISSN
1094-1622
卷号102期号:1
摘要
Designing proper time-dependent control fields for slowly varying the system to the ground state that encodes the problem solution is crucial for adiabatic quantum computation. However, inevitable perturbations in real applications demand us to accelerate the evolution so that the adiabatic errors can be prevented from accumulation. Here, by treating this trade-off task as a multiobjective optimization problem, we propose a gradient-free learning algorithm with pulse smoothing technique to search optimal adiabatic quantum pathways and apply it to the Landau-Zener Hamiltonian and Grover search Hamiltonian. Numerical comparisons with a linear schedule, local adiabatic theorem induced schedule, and gradient-based algorithm searched schedule reveal that the proposed method can achieve significant performance improvements in terms of the adiabatic time and the instantaneous ground-state population maintenance. The proposed method can be used to solve more complex and real adiabatic quantum computation problems.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China[2018YFA0306600] ; National Natural Science Foundation of China[11975117][11605005][11875159][U1801661] ; Anhui Initiative in Quantum Information Technologies[AHY050000] ; Guangdong Provincial Key Laboratory[2019B121203002]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000550189300003
出版者
EI入藏号
20203108989224
EI主题词
Economic and social effects ; Hamiltonians ; Population statistics ; Scheduling ; Quantum computers ; Computation theory ; Computational efficiency ; Multiobjective optimization ; Quantum theory ; Learning algorithms ; Numerical methods ; Scheduling algorithms
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Systems and Equipment:722 ; Machine Learning:723.4.2 ; Management:912.2 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Quantum Theory; Quantum Mechanics:931.4 ; Social Sciences:971
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/141395
专题量子科学与工程研究院
作者单位
1.Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
2.Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
3.Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
5.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
6.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
通讯作者单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Yang, Xiaodongvi,Liu, Ran,Li, Jun,et al. Optimizing adiabatic quantum pathways via a learning algorithm[J]. PHYSICAL REVIEW A,2020,102(1).
APA
Yang, Xiaodongvi,Liu, Ran,Li, Jun,&Peng, Xinhua.(2020).Optimizing adiabatic quantum pathways via a learning algorithm.PHYSICAL REVIEW A,102(1).
MLA
Yang, Xiaodongvi,et al."Optimizing adiabatic quantum pathways via a learning algorithm".PHYSICAL REVIEW A 102.1(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xiaodongvi]的文章
[Liu, Ran]的文章
[Li, Jun]的文章
百度学术
百度学术中相似的文章
[Yang, Xiaodongvi]的文章
[Liu, Ran]的文章
[Li, Jun]的文章
必应学术
必应学术中相似的文章
[Yang, Xiaodongvi]的文章
[Liu, Ran]的文章
[Li, Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。