中文版 | English
题名

DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm

作者
通讯作者Chang,Haibin
发表日期
2020-10-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号418
摘要
Data-driven methods have recently been developed to discover underlying partial differential equations (PDEs) of physical problems. However, for these methods, a complete candidate library of potential terms in a PDE are usually required. To overcome this limitation, we propose a novel framework combining deep learning and genetic algorithm, called DLGA-PDE, for discovering PDEs. In the proposed framework, a deep neural network that is trained with available data of a physical problem is utilized to generate meta-data and calculate derivatives, and the genetic algorithm is then employed to discover the underlying PDE. Owing to the merits of the genetic algorithm, such as mutation and crossover, DLGA-PDE can work with an incomplete candidate library. The proposed DLGA-PDE is tested for discovery of the Korteweg–de Vries (KdV) equation, the Burgers equation, the wave equation, and the Chaffee-Infante equation, respectively, for proof-of-concept. Satisfactory results are obtained without the need for a complete candidate library, even in the presence of noisy and limited data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[51520105005][U1663208] ; National Science and Technology Major Project of China[2017ZX05009-005][2017ZX05049-003]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000561583600006
出版者
EI入藏号
20203008976417
EI主题词
Genetic algorithms ; Learning algorithms ; Partial differential equations
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Machine Learning:723.4.2 ; Calculus:921.2
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85088365166
来源库
Scopus
引用统计
被引频次[WOS]:55
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/141567
专题工学院_环境科学与工程学院
作者单位
1.BIC-ESAT,ERE,SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518000,China
推荐引用方式
GB/T 7714
Xu,Hao,Chang,Haibin,Zhang,Dongxiao. DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2020,418.
APA
Xu,Hao,Chang,Haibin,&Zhang,Dongxiao.(2020).DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm.JOURNAL OF COMPUTATIONAL PHYSICS,418.
MLA
Xu,Hao,et al."DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm".JOURNAL OF COMPUTATIONAL PHYSICS 418(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Hao]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Xu,Hao]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Xu,Hao]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。