题名 | DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm |
作者 | |
通讯作者 | Chang,Haibin |
发表日期 | 2020-10-01
|
DOI | |
发表期刊 | |
ISSN | 0021-9991
|
EISSN | 1090-2716
|
卷号 | 418 |
摘要 | Data-driven methods have recently been developed to discover underlying partial differential equations (PDEs) of physical problems. However, for these methods, a complete candidate library of potential terms in a PDE are usually required. To overcome this limitation, we propose a novel framework combining deep learning and genetic algorithm, called DLGA-PDE, for discovering PDEs. In the proposed framework, a deep neural network that is trained with available data of a physical problem is utilized to generate meta-data and calculate derivatives, and the genetic algorithm is then employed to discover the underlying PDE. Owing to the merits of the genetic algorithm, such as mutation and crossover, DLGA-PDE can work with an incomplete candidate library. The proposed DLGA-PDE is tested for discovery of the Korteweg–de Vries (KdV) equation, the Burgers equation, the wave equation, and the Chaffee-Infante equation, respectively, for proof-of-concept. Satisfactory results are obtained without the need for a complete candidate library, even in the presence of noisy and limited data. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[51520105005][U1663208]
; National Science and Technology Major Project of China[2017ZX05009-005][2017ZX05049-003]
|
WOS研究方向 | Computer Science
; Physics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
WOS记录号 | WOS:000561583600006
|
出版者 | |
EI入藏号 | 20203008976417
|
EI主题词 | Genetic algorithms
; Learning algorithms
; Partial differential equations
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Machine Learning:723.4.2
; Calculus:921.2
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85088365166
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:55
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/141567 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.BIC-ESAT,ERE,SKLTCS,College of Engineering,Peking University,Beijing,100871,China 2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518000,China |
推荐引用方式 GB/T 7714 |
Xu,Hao,Chang,Haibin,Zhang,Dongxiao. DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2020,418.
|
APA |
Xu,Hao,Chang,Haibin,&Zhang,Dongxiao.(2020).DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm.JOURNAL OF COMPUTATIONAL PHYSICS,418.
|
MLA |
Xu,Hao,et al."DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm".JOURNAL OF COMPUTATIONAL PHYSICS 418(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论