中文版 | English
题名

Meta-path-based link prediction in schema-rich heterogeneous information network

作者
通讯作者Shi,Chuan
发表日期
2017-06-01
DOI
发表期刊
ISSN
2364-415X
EISSN
2364-4168
卷号3期号:4页码:285-296
摘要

Recent years have witnessed the boom of heterogeneous information network (HIN), which contains different types of nodes and relations. Complex structure and rich semantics are unique features of HIN. Meta-path, the sequence of object types and relations connecting them, has been widely used to mine this semantic information in HIN. Link prediction is an important data mining task to predict the potential links among nodes, which are required in many applications, e.g., filling missing links. The contemporary link prediction is usually based on simple HIN whose schema is bipartite or star schema. In these works, the meta-paths should be predefined or enumerated. However, in many real networked data, it is hard to describe their network structures with simple schema. For example, the RDF-formatted Knowledge Graph which includes tens of thousands types of objects and links is a kind of schema-rich HIN. In this kind of schema-rich HIN, it is impossible to enumerate meta-paths so that the contemporary work is invalid. In this paper, we study link prediction in schema-rich HIN and propose a novel method named Link Prediction with automatic meta Path (LiPaP). The LiPaP designs an algorithm called automatic meta-path generation to automatically extract meta-paths from schema-rich HIN in the approximate order of relevance and adopt a supervised method with likelihood function to learn the weights of extracted meta-paths. Extensive experiments on real knowledge database, Yago, demonstrate that LiPaP is an effective, steady and efficient approach.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20212010365047
EI主题词
Data mining ; Forecasting ; Information services ; Knowledge representation ; Lithium compounds ; Semantic Web ; Semantics
EI分类号
Computer Software, Data Handling and Applications:723 ; Information Science:903 ; Information Services:903.4
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/141724
专题南方科技大学
作者单位
1.Beijing University of Posts and Telecommunications,Beijing,China
2.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Cao,Xiaohuan,Zheng,Yuyan,Shi,Chuan,et al. Meta-path-based link prediction in schema-rich heterogeneous information network[J]. International Journal of Data Science and Analytics,2017,3(4):285-296.
APA
Cao,Xiaohuan,Zheng,Yuyan,Shi,Chuan,Li,Jingzhi,&Wu,Bin.(2017).Meta-path-based link prediction in schema-rich heterogeneous information network.International Journal of Data Science and Analytics,3(4),285-296.
MLA
Cao,Xiaohuan,et al."Meta-path-based link prediction in schema-rich heterogeneous information network".International Journal of Data Science and Analytics 3.4(2017):285-296.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cao2017_Article_Meta(1544KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao,Xiaohuan]的文章
[Zheng,Yuyan]的文章
[Shi,Chuan]的文章
百度学术
百度学术中相似的文章
[Cao,Xiaohuan]的文章
[Zheng,Yuyan]的文章
[Shi,Chuan]的文章
必应学术
必应学术中相似的文章
[Cao,Xiaohuan]的文章
[Zheng,Yuyan]的文章
[Shi,Chuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。