中文版 | English
题名

Recommendation in heterogeneous information network via dual similarity regularization

作者
通讯作者Shi,Chuan
发表日期
2017-02-01
DOI
发表期刊
ISSN
2364-415X
EISSN
2364-4168
卷号3期号:1页码:35-48
摘要

Recommender system has caught much attention from multiple disciplines, and many techniques are proposed to build it. Recently, social recommendation becomes a hot research direction. The social recommendation methods tend to leverage social relations among users obtained from social network to alleviate data sparsity and cold-start problems in recommender systems. It employs simple similarity information of users as social regularization on users. Unfortunately, the widely used social regularization suffers from several aspects: (1) The similarity information of users only stems from social relations of related users; (2) it only has constraint on users without considering the impact of items for recommendation; (3) it may not work well for dissimilar users. To overcome the shortcomings of social regularization, we design a novel dual similarity regularization to impose the constraint on users and items with high and low similarities simultaneously. With the dual similarity regularization, we further propose an optimization function to integrate the similarity information of users and items under different semantic meta-paths, and a gradient descend solution is derived to optimize the objective function. Experiments with different meta-paths validate the superiority of integrating much available information, and the experiments conducted on three real data sets validate the effectiveness of the proposed solution.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/141725
专题南方科技大学
作者单位
1.Beijing Key Lab of Intelligent Telecommunications Software and Multimedia,Beijing University of Posts and Telecommunications,Beijing,China
2.Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing,China
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Zheng,Jing,Liu,Jian,Shi,Chuan,et al. Recommendation in heterogeneous information network via dual similarity regularization[J]. International Journal of Data Science and Analytics,2017,3(1):35-48.
APA
Zheng,Jing,Liu,Jian,Shi,Chuan,Zhuang,Fuzhen,Li,Jingzhi,&Wu,Bin.(2017).Recommendation in heterogeneous information network via dual similarity regularization.International Journal of Data Science and Analytics,3(1),35-48.
MLA
Zheng,Jing,et al."Recommendation in heterogeneous information network via dual similarity regularization".International Journal of Data Science and Analytics 3.1(2017):35-48.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zheng2017_Article_Re(731KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Jing]的文章
[Liu,Jian]的文章
[Shi,Chuan]的文章
百度学术
百度学术中相似的文章
[Zheng,Jing]的文章
[Liu,Jian]的文章
[Shi,Chuan]的文章
必应学术
必应学术中相似的文章
[Zheng,Jing]的文章
[Liu,Jian]的文章
[Shi,Chuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。