题名 | 石墨烯MEMS航空气压传感器结构设计与封装技术研究 |
其他题名 | RESEARCH ON STRUCTURAL DESIGN AND PACKAGING TECHNOLOGY OF GRAPHENE MEMS AVIATION AIR PRESSURE SENSOR
|
姓名 | |
学号 | 11849096
|
学位类型 | 硕士
|
学位专业 | 航天工程领域工程
|
导师 | |
论文答辩日期 | 2020-06-02
|
论文提交日期 | 2020-07-20
|
学位授予单位 | 哈尔滨工业大学
|
学位授予地点 | 深圳
|
摘要 | 航空大气数据测量系统是保障飞行器飞行安全的重要机载设备,测量的核心参数之一是气压,气压测量的关键是作用于测量系统最前端的气压传感器技术。随着航空器小型化、无人化等需求的出现,MEMS技术的发展与石墨烯材料大弹性形变幅度特点的发现,设计体积小、质量轻、功耗低的石墨烯MEMS气压传感器成为传感器领域的新研究方向。由于MEMS封装的特殊性,在传感器设计阶段探究封装方法,针对传感器作用原理设计封装系统并研究有效的封装工艺,能在一定程度上减少研发的成本、缩短产品的开发时间、提高产品的技术性能。本文针对航空大气数据测量系统需要的微型化、高环境适应性、高精度小量程气压传感器的问题,选择新型二维纳米材料石墨烯代替硅基材料,提出使用光纤干涉与隧穿电流两种读取方式设计传感器结构,应用COMSOL软件进行模拟仿真,并研究传感器的封装方法。本文主要完成工作分为三个部分:第一部分主要完成石墨烯光纤F-P内腔式MEMS气压传感器结构设计与分析。应用石墨烯薄膜作为反射隔膜与承压隔膜设计气压传感器结构,通过COMSOL软件建模仿真,依次探究了石墨烯薄膜中心点位移与其承受气压、有效半径、厚度大小的关系。总结出传感器承受气压大小与石墨烯薄膜中心点位移等参量的计算公式,从而在使用光纤干涉原理解算出石墨烯薄膜中心点位移大小时能够得到传感器所在环境的气压。第二部分主要完成石墨烯隧穿电流式MEMS气压传感器结构设计与分析。提出石墨烯薄膜作为承压隔膜与发生量子隧穿的隔膜设计传感器结构。通过COMSOL软件建模与仿真,探究石墨烯薄膜中心点位移与其承受环境气压和外接控制电压的关系。总结两变量同时作用时石墨烯薄膜中心点位移量的计算公式,从而在保证石墨烯薄膜中心点位移量不变的前提下,可以根据控制电路施加电压求取环境气压。第三部分主要完成石墨烯MEMS气压传感器的封装工艺的研究。针对本文设计两种石墨烯MEMS气压传感器的结构,提出使用胶黏剂完成微尺度封装。结合点胶技术的特点选用时间压力式针头式点胶,设计点胶系统并选择胶黏剂与点胶设备,验证封装方法可行性并进行封装实验。 |
其他摘要 | Airborne atmospheric data measurement system is an important airborne equipment to ensure the flight safety of aircraft. One of the core parameters of measurement is air pressure. The key of air pressure measurement is the pressure sensor technology that acts on the front end of the measurement system. With the emergence of demands for miniaturization and unmanned aircraft, the development of MEMS technology and the discovery of the large elastic deformation characteristics of graphene materials, the design of graphene MEMS pressure sensors with small size, light weight and low power consumption has become a new research direction in the field of sensors. Due to the particularity of MEMS packaging, exploring the packaging method in the sensor design stage, designing the packaging system according to the principle of the sensor and studying the effective packaging process can reduce the cost of research and development, shorten the development time of the product, and improve the technical performance of the product to a certain extent .Aiming at the problems of miniaturization, high environmental adaptability and high precision small range air pressure sensor needed by aeronautical atmospheric data measurement system, this paper selected two-dimensional nano-material graphene instead of silicon-based material, proposed to design sensor structure using two reading modes of fiber interference and tunneling current, and applied COMSOL software to simulate it, and studied the packaging method of sensor. This paper can be divided into three parts: The first part mainly completed the structure design and analysis of graphene fiber Fabry-Perot cavity type MEMS pressure sensor. Graphene film was used as the reflection diaphragm and pressure diaphragm to design the structure of pressure sensor. By modeling and simulation with COMSOL software, the relationship between the center displacement of graphene film and its pressure, effective radius and thickness was investigated in turn. The calculation formulas of the parameters such as the pressure of the sensor and the displacement of the center of the graphene film were summarized. The second part mainly completed the structural design and analysis of graphene tunneling current MEMS pressure sensor. Graphene film was proposed as a pressure-bearing diaphragm and a design sensor structure for the diaphragm with quantum tunneling. By modeling and simulating COMSOL software, the relationship between the central displacement of graphene film and its ambient pressure and external control voltage was investigated. This paper summarized the calculation formula of the displacement of the center point of the graphene film when the two variables act simultaneously. Therefore, when the displacement of the center point of the graphene film was calculated using the optical fiber interference principle, the air pressure of the environment where the sensor was located can be obtained.The third part mainly completed the packaging process of graphene MEMS pressure sensor. According to the structure of two kinds of graphene MEMS pressure sensors in this paper, the micro-scale package with adhesive was proposed. Combined with the characteristics of dispensing technology, time pressure needle dispensing was selected, a dispensing system was designed, and adhesives and dispensing equipment were selected to verify the feasibility of the packaging method and conduct packaging experiments. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 联合培养
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/142796 |
专题 | 创新创业学院 |
作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
刘絮. 石墨烯MEMS航空气压传感器结构设计与封装技术研究[D]. 深圳. 哈尔滨工业大学,2020.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
石墨烯MEMS航空气压传感器结构设计与封(6006KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[刘絮]的文章 |
百度学术 |
百度学术中相似的文章 |
[刘絮]的文章 |
必应学术 |
必应学术中相似的文章 |
[刘絮]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论