中文版 | English
题名

Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae

作者
发表日期
2020-07-15
DOI
发表期刊
ISSN
1467-5463
EISSN
1477-4054
卷号21期号:4页码:1347-1355
摘要
Streptococcus pneumoniae is the most common human respiratory pathogen, and β-lactam antibiotics have been employed to treat infections caused by S. pneumoniae for decades. β-lactam resistance is steadily increasing in pneumococci and is mainly associated with the alteration in penicillin-binding proteins (PBPs) that reduce binding affinity of antibiotics to PBPs. However, the high variability of PBPs in clinical isolates and their mosaic gene structure hamper the predication of resistance level according to the PBP gene sequences. In this study, we developed a systematic strategy for applying supervised machine learning to predict S. pneumoniae antimicrobial susceptibility to β-lactam antibiotics. We combined published PBP sequences with minimum inhibitory concentration (MIC) values as labelled data and the sequences from NCBI database without MIC values as unlabelled data to develop an approach, using only a fragment from pbp2x (750 bp) and a fragment from pbp2b (750 bp) to predicate the cefuroxime and amoxicillin resistance. We further validated the performance of the supervised learning model by constructing mutants containing the randomly selected pbps and testing more clinical strains isolated from Chinese hospital. In addition, we established the association between resistance phenotypes and serotypes and sequence type of S. pneumoniae using our approach, which facilitate the understanding of the worldwide epidemiology of S. pneumonia.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[31870134][81861138053] ; Beijing Municipal Science & Technology Commission[Z161100000116042]
WOS研究方向
Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目
Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号
WOS:000576139100018
出版者
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85088265609
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/153345
专题南方科技大学医学院
作者单位
1.State Key Laboratory of Microbial Resources,Institute of Microbiology,Chinese Academy of Sciences,China
2.Singapore Centre for Environmental Life Sciences Engineering,Nanyang Technological University 60 Nanyang Drive,Singapore
3.College of Life Science,University of Chinese Academy of Sciences,China
4.Institute of Clinical Pharmacology,Peking University First Hospital,China
5.School of Medicine,Southern University of Science and Technology,Guangdong Province,Shenzhen,China
推荐引用方式
GB/T 7714
Zhang,Chaodong,Ju,Yingjiao,Tang,Na,et al. Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae[J]. BRIEFINGS IN BIOINFORMATICS,2020,21(4):1347-1355.
APA
Zhang,Chaodong.,Ju,Yingjiao.,Tang,Na.,Li,Yun.,Zhang,Gang.,...&Feng,Jie.(2020).Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae.BRIEFINGS IN BIOINFORMATICS,21(4),1347-1355.
MLA
Zhang,Chaodong,et al."Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae".BRIEFINGS IN BIOINFORMATICS 21.4(2020):1347-1355.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Chaodong]的文章
[Ju,Yingjiao]的文章
[Tang,Na]的文章
百度学术
百度学术中相似的文章
[Zhang,Chaodong]的文章
[Ju,Yingjiao]的文章
[Tang,Na]的文章
必应学术
必应学术中相似的文章
[Zhang,Chaodong]的文章
[Ju,Yingjiao]的文章
[Tang,Na]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。