题名 | Optimal Control Inspired Q-Learning for Switched Linear Systems |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
ISSN | 0743-1619
|
ISBN | 978-1-5386-8267-8
|
会议录名称 | |
卷号 | 2020-July
|
页码 | 4003-4010
|
会议日期 | 1-3 July 2020
|
会议地点 | Denver, CO, USA
|
摘要 | This paper studies Q-learning for quadratic regulation problem of switched linear systems. Inspired by the analytical results from classical model-based optimal control, a structured Q-learning algorithm is developed. The proposed algorithm consists of a carefully designed parametric approximator that respects the analytical structure of the exact Q-function and an associated parameter training algorithm. Based on a geometric insight gained from the analysis of the exact Q-function structure, training of approximation parameters is formulated as a matrix identification problem. Probabilistic guarantee on successful identification of all matrices using the proposed algorithm is rigorously proved under moderate conditions. Several numerical studies are conducted to demonstrate the effectiveness of the overall proposed Q-learning algorithm. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203409087210
|
EI主题词 | Parameter estimation
; Learning algorithms
; Linear systems
|
EI分类号 | Machine Learning:723.4.2
; Algebra:921.1
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85089592193
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9147818 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/153348 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Southern University of Science and Technology (SUSTech),Department of Mechanical and Energy Engineering,Shenzhen,China 2.Ohio State University,Department of Electrical and Computer Engineering,Columbus,United States |
第一作者单位 | 机械与能源工程系 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Chen,Hua,Zheng,Linfang,Zhang,Wei. Optimal Control Inspired Q-Learning for Switched Linear Systems[C],2020:4003-4010.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论