题名 | Deep Learning Based Trainable Approximate Message Passing for Massive MIMO Detection |
作者 | |
DOI | |
发表日期 | 2020-06-01
|
ISSN | 1550-3607
|
ISBN | 978-1-7281-5090-1
|
会议录名称 | |
卷号 | 2020-June
|
页码 | 1-6
|
会议日期 | 7-11 June 2020
|
会议地点 | Dublin, Ireland
|
摘要 | In this paper, we present a deep learning based trainable approximate message passing algorithm (TAMP) for signal detection in massive multiple-input multiple-output (MIMO) systems. The TAMP network consists of a preprocessing layer and a fixed number of detection layers, where the preprocessing layer is designed by using a standard fully connected layer, and the structure of each detection layer is derived by unfolding each iteration of the iterative GAMP algorithm. In addition, the proposed TAMP includes trainable parameters controlling prior mean and variance of minimum mean squared error (MMSE) denoiser. The parameters are trained by standard deep learning techniques. We evaluate the signal detection performance of the proposed TAMP under Rayleigh-fading and spatial correlated MIMO channels. Furthermore, we compare TAMP with existing state-of-the-art iterative message passing-based detection algorithms and deep learning based detection algorithms. Computer experiments show that TAMP is applicable under both Rayleigh-fading and spatial correlated channel in massive MIMO systems. Moreover, comparison results demonstrate that TAMP can achieve better detection accuracy and faster convergence. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203409063856
|
EI主题词 | Message passing
; Deep learning
; Learning algorithms
; Mean square error
; Iterative methods
; MIMO systems
; Learning systems
; Rayleigh fading
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Radio Systems and Equipment:716.3
; Computer Programming:723.1
; Data Processing and Image Processing:723.2
; Machine Learning:723.4.2
; Numerical Methods:921.6
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85089408712
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9148845 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/153363 |
专题 | 南方科技大学 前沿与交叉科学研究院 |
作者单位 | 1.Peng Cheng Laboratory,Shenzhen,China 2.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Zheng,Peicong,Zeng,Yuan,Liu,Zhenrong,et al. Deep Learning Based Trainable Approximate Message Passing for Massive MIMO Detection[C],2020:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论