中文版 | English
题名

Deep Learning Based Trainable Approximate Message Passing for Massive MIMO Detection

作者
DOI
发表日期
2020-06-01
ISSN
1550-3607
ISBN
978-1-7281-5090-1
会议录名称
卷号
2020-June
页码
1-6
会议日期
7-11 June 2020
会议地点
Dublin, Ireland
摘要
In this paper, we present a deep learning based trainable approximate message passing algorithm (TAMP) for signal detection in massive multiple-input multiple-output (MIMO) systems. The TAMP network consists of a preprocessing layer and a fixed number of detection layers, where the preprocessing layer is designed by using a standard fully connected layer, and the structure of each detection layer is derived by unfolding each iteration of the iterative GAMP algorithm. In addition, the proposed TAMP includes trainable parameters controlling prior mean and variance of minimum mean squared error (MMSE) denoiser. The parameters are trained by standard deep learning techniques. We evaluate the signal detection performance of the proposed TAMP under Rayleigh-fading and spatial correlated MIMO channels. Furthermore, we compare TAMP with existing state-of-the-art iterative message passing-based detection algorithms and deep learning based detection algorithms. Computer experiments show that TAMP is applicable under both Rayleigh-fading and spatial correlated channel in massive MIMO systems. Moreover, comparison results demonstrate that TAMP can achieve better detection accuracy and faster convergence.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203409063856
EI主题词
Message passing ; Deep learning ; Learning algorithms ; Mean square error ; Iterative methods ; MIMO systems ; Learning systems ; Rayleigh fading
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Radio Systems and Equipment:716.3 ; Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Machine Learning:723.4.2 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85089408712
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9148845
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/153363
专题南方科技大学
前沿与交叉科学研究院
作者单位
1.Peng Cheng Laboratory,Shenzhen,China
2.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Zheng,Peicong,Zeng,Yuan,Liu,Zhenrong,et al. Deep Learning Based Trainable Approximate Message Passing for Massive MIMO Detection[C],2020:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Peicong]的文章
[Zeng,Yuan]的文章
[Liu,Zhenrong]的文章
百度学术
百度学术中相似的文章
[Zheng,Peicong]的文章
[Zeng,Yuan]的文章
[Liu,Zhenrong]的文章
必应学术
必应学术中相似的文章
[Zheng,Peicong]的文章
[Zeng,Yuan]的文章
[Liu,Zhenrong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。