中文版 | English
题名

Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets

作者
发表日期
2020-08-25
DOI
发表期刊
ISSN
1936-0851
EISSN
1936-086X
卷号14期号:8页码:9545-9561
摘要

Conversion-type transition-metal phosphide anode materials with high theoretical capacity usually suffer from low-rate capability and severe capacity decay, which are mainly caused by their inferior electronic conductivities and large volumetric variations together with the poor reversibility of discharge product (Li3P), impeding their practical applications. Herein, guided by density functional theory calculations, these obstacles are simultaneously mitigated by confining amorphous FeP nanoparticles into ultrathin 3D interconnected P-doped porous carbon nanosheets (denoted as FeP@CNs) via a facile approach, forming an intriguing 3D flake-CNs-like configuration. As an anode for lithium-ion batteries (LIBs), the resulting FeP@CNs electrode not only reaches a high reversible capacity (837 mA h g-1 after 300 cycles at 0.2 A g-1) and an exceptional rate capability (403 mA h g-1 at 16 A g-1) but also exhibits extraordinary durability (2500 cycles, 563 mA h g-1 at 4 A g-1, 98% capacity retention). By combining DFT calculations, in situ transmission electron microscopy, and a suite of ex situ microscopic and spectroscopic techniques, we show that the superior performances of FeP@CNs anode originate from its prominent structural and compositional merits, which render fast electron/ion-transport kinetics and abundant active sites (amorphous FeP nanoparticles and structural defects in P-doped CNs) for charge storage, promote the reversibility of conversion reactions, and buffer the volume variations while preventing pulverization/aggregation of FeP during cycling, thus enabling a high rate and highly durable lithium storage. Furthermore, a full cell composed of the prelithiated FeP@CNs anode and commercial LiFePO4 cathode exhibits impressive rate performance while maintaining superior cycling stability. This work fundamentally and experimentally presents a facile and effective structural engineering strategy for markedly improving the performance of conversion-type anodes for advanced LIBs.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文 ; ESI高被引
学校署名
其他
资助项目
National Natural Science Foundation of China[21703185][51872098][21805278][51901013] ; Leading Project Foundation of Science Department of Fujian Province[2018H0034] ; University of Science and Technology Beijing[06500135] ; Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology[HKDNM201906]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:000566341000024
出版者
EI入藏号
20204209348996
EI主题词
Nanoparticles ; Carbon ; Nanosheets ; Phosphorus ; Transition metals ; Buffer storage ; Cobalt compounds ; Porous materials ; Density functional theory ; Lithium compounds ; Phosphorus compounds ; Storage (materials) ; Anodes ; Iron compounds ; High resolution transmission electron microscopy
EI分类号
Metallurgy and Metallography:531 ; Storage:694.4 ; Electron Tubes:714.1 ; Data Storage, Equipment and Techniques:722.1 ; Optical Devices and Systems:741.3 ; Nanotechnology:761 ; Chemical Products Generally:804 ; Probability Theory:922.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4 ; Solid State Physics:933 ; Materials Science:951
Scopus记录号
2-s2.0-85089603888
来源库
Scopus
引用统计
被引频次[WOS]:264
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/153583
专题工学院_材料科学与工程系
作者单位
1.Department of Materials Science and Engineering,College of Materials,Xiamen University,Xiamen,361005,China
2.Beijing Advanced Innovation Center for Materials Genome Engineering,State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,100083,China
3.Department of Nanoengineering,University of California San Diego,La Jolla,92093,United States
4.Energy Storage and Distributed Resources Division,Lawrence Berkeley National Laboratory,Berkeley,94720,United States
5.Advanced Light Source Division,Lawrence Berkeley National Laboratory,Berkeley,94720,United States
6.Department of Materials Science & Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China
7.School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta,30332,United States
推荐引用方式
GB/T 7714
Zheng,Zhiming,Wu,Hong Hui,Liu,Haodong,et al. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets[J]. ACS Nano,2020,14(8):9545-9561.
APA
Zheng,Zhiming.,Wu,Hong Hui.,Liu,Haodong.,Zhang,Qiaobao.,He,Xin.,...&Wang,Ming Sheng.(2020).Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets.ACS Nano,14(8),9545-9561.
MLA
Zheng,Zhiming,et al."Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets".ACS Nano 14.8(2020):9545-9561.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Achieving Fast and D(4330KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Zhiming]的文章
[Wu,Hong Hui]的文章
[Liu,Haodong]的文章
百度学术
百度学术中相似的文章
[Zheng,Zhiming]的文章
[Wu,Hong Hui]的文章
[Liu,Haodong]的文章
必应学术
必应学术中相似的文章
[Zheng,Zhiming]的文章
[Wu,Hong Hui]的文章
[Liu,Haodong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。