中文版 | English
题名

Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders

作者
通讯作者Yang,Jianlong
发表日期
2020
DOI
发表期刊
ISSN
2164-2591
EISSN
2164-2591
卷号9期号:2页码:1-9
摘要

Purpose: To assess whether a generative adversarial network (GAN) could synthesize realistic optical coherence tomography (OCT) images that satisfactorily serve as the educational images for retinal specialists, and the training datasets for the classification of various retinal disorders using deep learning (DL). Methods: The GANs architecture was adopted to synthesize high-resolution OCT images trained on a publicly available OCT dataset, including urgent referrals (37,206 OCT images from eyes with choroidal neovascularization, and 11,349 OCT images from eyes with diabetic macular edema) and nonurgent referrals (8617 OCT images from eyes with drusen, and 51,140 OCT images from normal eyes). Four hundred real and synthetic OCT images were evaluated by two retinal specialists (with over 10 years of clinical retinal experience) to assess image quality. We further trained two DL models on either real or synthetic datasets and compared the performance of urgent versus nonurgent referrals diagnosis tested on a local (1000 images from the public dataset) and clinical validation dataset (278 images from Shanghai Shibei Hospital). Results: The image quality of real versus synthetic OCT images was similar as assessed by two retinal specialists. The accuracy of discrimination of real versus synthetic OCT images was 59.50% for retinal specialist 1 and 53.67% for retinal specialist 2. For the local dataset, the DL model trained on real (DL_Model_R) and synthetic OCT images (DL_Model_S) had an area under the curve (AUC) of 0.99, and 0.98, respectively. For the clinical dataset, the AUC was 0.94 for DL_Model_R and 0.90 for DL_Model_S. Conclusions: The GAN synthetic OCT images can be used by clinicians for educational purposes and for developing DL algorithms. Translational Relevance: The medical image synthesis based on GANs is promising in humans and machines to fulfill clinical tasks.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85088699544
来源库
Scopus
引用统计
被引频次[WOS]:40
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/153635
专题工学院_计算机科学与工程系
作者单位
1.Department of Ophthalmology,Shanghai Children’s Hospital,Shanghai Jiao Tong University,Shanghai,China
2.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
3.School of Information Science and Technology,ShanghaiTech University,Shanghai,China
4.Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong,Shantou University Medical College,Shantou,China
5.Department of Ophthalmology,Shibei Hospital,Shanghai,China
6.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Zheng,Ce,Xie,Xiaolin,Zhou,Kang,et al. Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders[J]. Translational Vision Science & Technology,2020,9(2):1-9.
APA
Zheng,Ce.,Xie,Xiaolin.,Zhou,Kang.,Chen,Bang.,Chen,Jili.,...&Liu,Jiang.(2020).Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders.Translational Vision Science & Technology,9(2),1-9.
MLA
Zheng,Ce,et al."Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders".Translational Vision Science & Technology 9.2(2020):1-9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Assessment of Genera(1044KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Ce]的文章
[Xie,Xiaolin]的文章
[Zhou,Kang]的文章
百度学术
百度学术中相似的文章
[Zheng,Ce]的文章
[Xie,Xiaolin]的文章
[Zhou,Kang]的文章
必应学术
必应学术中相似的文章
[Zheng,Ce]的文章
[Xie,Xiaolin]的文章
[Zhou,Kang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。