题名 | DeepClaw: A robotic hardware benchmarking platform for learning object manipulation |
作者 | |
通讯作者 | Song,Chaoyang |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | IEEE
|
ISSN | 2159-6247
|
ISBN | 978-1-7281-6795-4
|
会议录名称 | |
卷号 | 2020-July
|
页码 | 2011-2018
|
会议日期 | 6-9 July 2020
|
会议地点 | Boston, MA, USA
|
摘要 | We present DeepClaw as a reconfigurable benchmark of robotic hardware and task hierarchy for robot learning. The DeepClaw benchmark aims at a mechatronics perspective of the robot learning problem, which features a minimum design of robot cell that can be easily reconfigured to host robot hardware from various vendors, including manipulators, grippers, cameras, desks, and objects, aiming at a streamlined collection of physical manipulation data and evaluation of the learned skills for hardware benchmarking. We provide a detailed design of the robot cell with readily available parts to build the experiment environment that can host a wide range of robotic hardware commonly adopted for robot learning. We propose a hierarchical pipeline of software integration, including localization, recognition, grasp planning, and motion planning, to streamline learning-based robot control, data collection, and experiment validation towards shareability and reproducibility. We present benchmarking results of the DeepClaw system for a baseline Tic-Tac-Toe task, a bin-clearing task, and a jigsaw puzzle task using three sets of standard robotic hardware. Our results show that tasks defined in DeepClaw can be easily reproduced on three robot cells. Under the same task setup, the differences in robotic hardware used will present a non-negligible impact on the performance metrics of robot learning. All design layouts and codes are hosted on Github for open access (https://github.com/bionicdl-sustech/DeepClaw). |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203709164231
|
EI主题词 | Computer Hardware
; Molecular Biology
; Machine Design
; Robot Programming
; Manipulators
; Motion Planning
; Data Acquisition
|
EI分类号 | Biology:461.9
; Mechanical Design:601
; Computer Systems And Equipment:722
; Computer Programming:723.1
; Data Processing And Image Processing:723.2
; Robotics:731.5
|
Scopus记录号 | 2-s2.0-85090380958
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9159011 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/154345 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Southern University of Science and Technology and AncoraSpring,Inc,SUSTech Institute of Robotics,Shenzhen, Guangdong,518055,China 2.Southern University of Science,Department of Mechanical and Energy Engineering,Shenzhen Guangdong,518055,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wan,Fang,Wang,Haokun,Liu,Xiaobo,et al. DeepClaw: A robotic hardware benchmarking platform for learning object manipulation[C],2020:2011-2018.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2005.02588.pdf(3786KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论