中文版 | English
题名

DeepClaw: A robotic hardware benchmarking platform for learning object manipulation

作者
通讯作者Song,Chaoyang
DOI
发表日期
2020-07-01
会议名称
IEEE
ISSN
2159-6247
ISBN
978-1-7281-6795-4
会议录名称
卷号
2020-July
页码
2011-2018
会议日期
6-9 July 2020
会议地点
Boston, MA, USA
摘要

We present DeepClaw as a reconfigurable benchmark of robotic hardware and task hierarchy for robot learning. The DeepClaw benchmark aims at a mechatronics perspective of the robot learning problem, which features a minimum design of robot cell that can be easily reconfigured to host robot hardware from various vendors, including manipulators, grippers, cameras, desks, and objects, aiming at a streamlined collection of physical manipulation data and evaluation of the learned skills for hardware benchmarking. We provide a detailed design of the robot cell with readily available parts to build the experiment environment that can host a wide range of robotic hardware commonly adopted for robot learning. We propose a hierarchical pipeline of software integration, including localization, recognition, grasp planning, and motion planning, to streamline learning-based robot control, data collection, and experiment validation towards shareability and reproducibility. We present benchmarking results of the DeepClaw system for a baseline Tic-Tac-Toe task, a bin-clearing task, and a jigsaw puzzle task using three sets of standard robotic hardware. Our results show that tasks defined in DeepClaw can be easily reproduced on three robot cells. Under the same task setup, the differences in robotic hardware used will present a non-negligible impact on the performance metrics of robot learning. All design layouts and codes are hosted on Github for open access (https://github.com/bionicdl-sustech/DeepClaw).

关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203709164231
EI主题词
Computer Hardware ; Molecular Biology ; Machine Design ; Robot Programming ; Manipulators ; Motion Planning ; Data Acquisition
EI分类号
Biology:461.9 ; Mechanical Design:601 ; Computer Systems And Equipment:722 ; Computer Programming:723.1 ; Data Processing And Image Processing:723.2 ; Robotics:731.5
Scopus记录号
2-s2.0-85090380958
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9159011
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/154345
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.Southern University of Science and Technology and AncoraSpring,Inc,SUSTech Institute of Robotics,Shenzhen, Guangdong,518055,China
2.Southern University of Science,Department of Mechanical and Energy Engineering,Shenzhen Guangdong,518055,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wan,Fang,Wang,Haokun,Liu,Xiaobo,et al. DeepClaw: A robotic hardware benchmarking platform for learning object manipulation[C],2020:2011-2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2005.02588.pdf(3786KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wan,Fang]的文章
[Wang,Haokun]的文章
[Liu,Xiaobo]的文章
百度学术
百度学术中相似的文章
[Wan,Fang]的文章
[Wang,Haokun]的文章
[Liu,Xiaobo]的文章
必应学术
必应学术中相似的文章
[Wan,Fang]的文章
[Wang,Haokun]的文章
[Liu,Xiaobo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。