中文版 | English
题名

Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction

作者
通讯作者Zhao, Yitian; Liu, Jiang
发表日期
2020-08-28
DOI
发表期刊
ISSN
0094-2405
EISSN
2473-4209
卷号47页码:4983-4996
摘要

Purpose Tortuosity of corneal nerve fibers acquired byin vivoConfocal Microscopy (IVCM) are closely correlated to numerous diseases. While tortuosity assessment has conventionally been conducted through labor-intensive manual evaluation, this warrants an automated and objective tortuosity assessment of curvilinear structures. This paper proposes a method that extracts the image-level features for corneal nerve tortuosity grading. Methods For an IVCM image, all corneal nerve fibers are first segmented and then, their tortuosity are calculated by morphological measures. The ordered weighted averaging (OWA) approach, and thek-Nearest-Neighbor guided dependent ordered weighted averaging (kNNDOWA) approach are proposed to aggregate the tortuosity values and form a set of extracted features. This is followed by running the Wrapper method, a supervised feature selection, with an aim to identify the most informative attributes for tortuosity grading. Results Validated on a public and an in-house benchmark data sets, experimental results demonstrate superiority of the proposed method over the conventional averaging and length-weighted averaging methods with performance gain in accuracy (15.44% and 14.34%, respectively). Conclusions The simultaneous use of multiple aggregation operators could extract the image-level features that lead to more stable and robust results compared with that using average and length-weighted average. The OWA method could facilitate the explanation of derived aggregation behavior through stress functions. The kNNDOWA method could mitigate the effects of outliers in the image-level feature extraction.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[61906181] ; China Postdoctoral Science Foundation[2019M652156] ; Ningbo
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000563277000001
出版者
EI入藏号
20203509111363
EI主题词
Nearest neighbor search ; Extraction ; Grading ; Benchmarking ; Mathematical operators ; Statistical methods ; Image processing
EI分类号
Data Processing and Image Processing:723.2 ; Chemical Operations:802.3 ; Optimization Techniques:921.5 ; Mathematical Statistics:922.2
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186456
专题工学院_计算机科学与工程系
作者单位
1.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo 315300, Peoples R China
2.North China Elect Power Univ, Sch Control & Comp Engn, Baoding 071003, Peoples R China
3.Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
4.Univ Liverpool, Dept Eye & Vis Sci, Liverpool L69 3BX, Merseyside, England
5.Peking Univ, Dept Ophthalmol, Hosp 3, Beijing 100191, Peoples R China
6.Royal Liverpool Univ Hosp, St Pauls Eye Unit, Liverpool L69 3BX, Merseyside, England
7.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Su, Pan,Chen, Tianhua,Xie, Jianyang,et al. Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction[J]. MEDICAL PHYSICS,2020,47:4983-4996.
APA
Su, Pan.,Chen, Tianhua.,Xie, Jianyang.,Zheng, Yalin.,Qi, Hong.,...&Liu, Jiang.(2020).Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction.MEDICAL PHYSICS,47,4983-4996.
MLA
Su, Pan,et al."Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction".MEDICAL PHYSICS 47(2020):4983-4996.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Corneal nerve tortuo(2802KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Su, Pan]的文章
[Chen, Tianhua]的文章
[Xie, Jianyang]的文章
百度学术
百度学术中相似的文章
[Su, Pan]的文章
[Chen, Tianhua]的文章
[Xie, Jianyang]的文章
必应学术
必应学术中相似的文章
[Su, Pan]的文章
[Chen, Tianhua]的文章
[Xie, Jianyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。