题名 | Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction |
作者 | |
通讯作者 | Zhao, Yitian; Liu, Jiang |
发表日期 | 2020-08-28
|
DOI | |
发表期刊 | |
ISSN | 0094-2405
|
EISSN | 2473-4209
|
卷号 | 47页码:4983-4996 |
摘要 | Purpose Tortuosity of corneal nerve fibers acquired byin vivoConfocal Microscopy (IVCM) are closely correlated to numerous diseases. While tortuosity assessment has conventionally been conducted through labor-intensive manual evaluation, this warrants an automated and objective tortuosity assessment of curvilinear structures. This paper proposes a method that extracts the image-level features for corneal nerve tortuosity grading. Methods For an IVCM image, all corneal nerve fibers are first segmented and then, their tortuosity are calculated by morphological measures. The ordered weighted averaging (OWA) approach, and thek-Nearest-Neighbor guided dependent ordered weighted averaging (kNNDOWA) approach are proposed to aggregate the tortuosity values and form a set of extracted features. This is followed by running the Wrapper method, a supervised feature selection, with an aim to identify the most informative attributes for tortuosity grading. Results Validated on a public and an in-house benchmark data sets, experimental results demonstrate superiority of the proposed method over the conventional averaging and length-weighted averaging methods with performance gain in accuracy (15.44% and 14.34%, respectively). Conclusions The simultaneous use of multiple aggregation operators could extract the image-level features that lead to more stable and robust results compared with that using average and length-weighted average. The OWA method could facilitate the explanation of derived aggregation behavior through stress functions. The kNNDOWA method could mitigate the effects of outliers in the image-level feature extraction. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[61906181]
; China Postdoctoral Science Foundation[2019M652156]
; Ningbo
|
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000563277000001
|
出版者 | |
EI入藏号 | 20203509111363
|
EI主题词 | Nearest neighbor search
; Extraction
; Grading
; Benchmarking
; Mathematical operators
; Statistical methods
; Image processing
|
EI分类号 | Data Processing and Image Processing:723.2
; Chemical Operations:802.3
; Optimization Techniques:921.5
; Mathematical Statistics:922.2
|
ESI学科分类 | CLINICAL MEDICINE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186456 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo 315300, Peoples R China 2.North China Elect Power Univ, Sch Control & Comp Engn, Baoding 071003, Peoples R China 3.Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England 4.Univ Liverpool, Dept Eye & Vis Sci, Liverpool L69 3BX, Merseyside, England 5.Peking Univ, Dept Ophthalmol, Hosp 3, Beijing 100191, Peoples R China 6.Royal Liverpool Univ Hosp, St Pauls Eye Unit, Liverpool L69 3BX, Merseyside, England 7.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Su, Pan,Chen, Tianhua,Xie, Jianyang,et al. Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction[J]. MEDICAL PHYSICS,2020,47:4983-4996.
|
APA |
Su, Pan.,Chen, Tianhua.,Xie, Jianyang.,Zheng, Yalin.,Qi, Hong.,...&Liu, Jiang.(2020).Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction.MEDICAL PHYSICS,47,4983-4996.
|
MLA |
Su, Pan,et al."Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction".MEDICAL PHYSICS 47(2020):4983-4996.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Corneal nerve tortuo(2802KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论