中文版 | English
题名

Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System

作者
通讯作者Wang, Cheng
发表日期
2020-07-20
DOI
发表期刊
ISSN
0885-7474
EISSN
1573-7691
卷号84期号:2
摘要
We present and analyze a uniquely solvable and unconditionally energy stable numerical scheme for the ternary Cahn-Hilliard system, with a polynomial pattern nonlinear free energy expansion. One key difficulty is associated with presence of the three mass components, though a total mass constraint reduces this to two components. Another numerical challenge is to ensure the energy stability for the nonlinear energy functional in the mixed product form, which turns out to be non-convex, non-concave in the three-phase space. To overcome this subtle difficulty, we add a few auxiliary terms to make the combined energy functional convex in the three-phase space, and this, in turn, yields a convex-concave decomposition of the physical energy in the ternary system. Consequently, both the unique solvability and the unconditional energy stability of the proposed numerical scheme are established at a theoretical level. In addition, an optimal rate convergence analysis in the l(infinity)8 (0, TN-1) boolean AND l(2)(0, T; H-N(1)) norm is provided, with Fourier pseudo-spectral discretization in space, which is the first such result in this field. To deal with the nonlinear implicit equations at each time step, we apply an efficient preconditioned steepest descent (PSD) algorithm. A second order accurate, modified BDF scheme is also discussed. A few numerical results are presented, which confirm the stability and accuracy of the proposed numerical scheme.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
NSFC[11871159][11671098][91630309] ; 111 Project[B08018] ; NSF[DMS-1719854][DMS-1418689][DMS-1715504] ; Guangdong Key Laboratory[2019B030301001]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000553484700002
出版者
EI入藏号
20203008969141
EI主题词
Optimization ; Phase space methods ; System stability ; Nonlinear equations ; Nonlinear analysis
EI分类号
Thermodynamics:641.1 ; Mathematics:921 ; Optimization Techniques:921.5 ; Systems Science:961
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:48
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186541
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
2.Univ Massachusetts, Math Dept, N Dartmouth, MA 02747 USA
3.Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
4.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
5.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China
6.Univ Tennessee, Math Dept, Knoxville, TN 37996 USA
推荐引用方式
GB/T 7714
Chen, Wenbin,Wang, Cheng,Wang, Shufen,et al. Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System[J]. JOURNAL OF SCIENTIFIC COMPUTING,2020,84(2).
APA
Chen, Wenbin,Wang, Cheng,Wang, Shufen,Wang, Xiaoming,&Wise, Steven M..(2020).Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System.JOURNAL OF SCIENTIFIC COMPUTING,84(2).
MLA
Chen, Wenbin,et al."Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System".JOURNAL OF SCIENTIFIC COMPUTING 84.2(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Wenbin]的文章
[Wang, Cheng]的文章
[Wang, Shufen]的文章
百度学术
百度学术中相似的文章
[Chen, Wenbin]的文章
[Wang, Cheng]的文章
[Wang, Shufen]的文章
必应学术
必应学术中相似的文章
[Chen, Wenbin]的文章
[Wang, Cheng]的文章
[Wang, Shufen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。