题名 | Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System |
作者 | |
通讯作者 | Wang, Cheng |
发表日期 | 2020-07-20
|
DOI | |
发表期刊 | |
ISSN | 0885-7474
|
EISSN | 1573-7691
|
卷号 | 84期号:2 |
摘要 | We present and analyze a uniquely solvable and unconditionally energy stable numerical scheme for the ternary Cahn-Hilliard system, with a polynomial pattern nonlinear free energy expansion. One key difficulty is associated with presence of the three mass components, though a total mass constraint reduces this to two components. Another numerical challenge is to ensure the energy stability for the nonlinear energy functional in the mixed product form, which turns out to be non-convex, non-concave in the three-phase space. To overcome this subtle difficulty, we add a few auxiliary terms to make the combined energy functional convex in the three-phase space, and this, in turn, yields a convex-concave decomposition of the physical energy in the ternary system. Consequently, both the unique solvability and the unconditional energy stability of the proposed numerical scheme are established at a theoretical level. In addition, an optimal rate convergence analysis in the l(infinity)8 (0, TN-1) boolean AND l(2)(0, T; H-N(1)) norm is provided, with Fourier pseudo-spectral discretization in space, which is the first such result in this field. To deal with the nonlinear implicit equations at each time step, we apply an efficient preconditioned steepest descent (PSD) algorithm. A second order accurate, modified BDF scheme is also discussed. A few numerical results are presented, which confirm the stability and accuracy of the proposed numerical scheme. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | NSFC[11871159][11671098][91630309]
; 111 Project[B08018]
; NSF[DMS-1719854][DMS-1418689][DMS-1715504]
; Guangdong Key Laboratory[2019B030301001]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000553484700002
|
出版者 | |
EI入藏号 | 20203008969141
|
EI主题词 | Optimization
; Phase space methods
; System stability
; Nonlinear equations
; Nonlinear analysis
|
EI分类号 | Thermodynamics:641.1
; Mathematics:921
; Optimization Techniques:921.5
; Systems Science:961
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:48
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186541 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China 2.Univ Massachusetts, Math Dept, N Dartmouth, MA 02747 USA 3.Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China 4.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 5.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China 6.Univ Tennessee, Math Dept, Knoxville, TN 37996 USA |
推荐引用方式 GB/T 7714 |
Chen, Wenbin,Wang, Cheng,Wang, Shufen,et al. Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System[J]. JOURNAL OF SCIENTIFIC COMPUTING,2020,84(2).
|
APA |
Chen, Wenbin,Wang, Cheng,Wang, Shufen,Wang, Xiaoming,&Wise, Steven M..(2020).Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System.JOURNAL OF SCIENTIFIC COMPUTING,84(2).
|
MLA |
Chen, Wenbin,et al."Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System".JOURNAL OF SCIENTIFIC COMPUTING 84.2(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论