中文版 | English
题名

Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles

作者
通讯作者Wang, Kai; Zhu, Xi
发表日期
2020-09-03
DOI
发表期刊
ISSN
1948-7185
卷号11期号:17页码:7232-7238
摘要

The synthesis of CdSe/CdS core/shell nanoparticles was revisited with the help of a causal inference machine learning framework. The tadpole morphology with 1-2 tails was experimentally discovered. The causal inference model revealed the causality between the oleic acid (OA), octadecylphosphonic acid (ODPA) ligands, and the detailed tail shape of the tadpole morphology. Further, with the identified causality, a neural network was provided to predict and directly lead to the original experimental discovery of new tadpole-shaped structures. An entropy-driven nucleation theory was developed to understand both the ligand and temperature dependent experimental data and the causal inference from the machine learning framework. This work provided a vivid example of how the artificial intelligence technology, including machine learning, could benefit the materials science research for the discovery.

相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI期刊 ; NI论文
学校署名
通讯
资助项目
Shenzhen Fundamental Research Foundation[JCYJ20170818103918295][JCYJ20180508162801893] ; National Natural Science Foundation of China[21805234][61875082][2019-INT018,2020-IND002]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000569375400042
出版者
EI入藏号
20204709515058
EI主题词
Cadmium compounds ; Nanoparticles ; Machine learning ; Morphology ; II-VI semiconductors ; Synthesis (chemical)
EI分类号
Semiconducting Materials:712.1 ; Artificial Intelligence:723.4 ; Nanotechnology:761 ; Physical Chemistry:801.4 ; Chemical Reactions:802.2 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Solid State Physics:933 ; Materials Science:951
来源库
Web of Science
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186546
专题工学院_电子与电气工程系
作者单位
1.Chinese Univ Hong Kong, Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518172, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
3.Univ Bordeaux, CNRS, F-33608 Pessac, France
4.Hubei Univ, Sch Mat Sci & Engn, Wuhan 430062, Peoples R China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Liu, Rulin,Hao, Junjie,Li, Jiagen,et al. Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles[J]. Journal of Physical Chemistry Letters,2020,11(17):7232-7238.
APA
Liu, Rulin.,Hao, Junjie.,Li, Jiagen.,Wang, Shujie.,Liu, Haochen.,...&Zhu, Xi.(2020).Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles.Journal of Physical Chemistry Letters,11(17),7232-7238.
MLA
Liu, Rulin,et al."Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles".Journal of Physical Chemistry Letters 11.17(2020):7232-7238.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
acs.jpclett.0c02115.(4161KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Rulin]的文章
[Hao, Junjie]的文章
[Li, Jiagen]的文章
百度学术
百度学术中相似的文章
[Liu, Rulin]的文章
[Hao, Junjie]的文章
[Li, Jiagen]的文章
必应学术
必应学术中相似的文章
[Liu, Rulin]的文章
[Hao, Junjie]的文章
[Li, Jiagen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。