题名 | Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles |
作者 | |
通讯作者 | Wang, Kai; Zhu, Xi |
发表日期 | 2020-09-03
|
DOI | |
发表期刊 | |
ISSN | 1948-7185
|
卷号 | 11期号:17页码:7232-7238 |
摘要 | The synthesis of CdSe/CdS core/shell nanoparticles was revisited with the help of a causal inference machine learning framework. The tadpole morphology with 1-2 tails was experimentally discovered. The causal inference model revealed the causality between the oleic acid (OA), octadecylphosphonic acid (ODPA) ligands, and the detailed tail shape of the tadpole morphology. Further, with the identified causality, a neural network was provided to predict and directly lead to the original experimental discovery of new tadpole-shaped structures. An entropy-driven nucleation theory was developed to understand both the ligand and temperature dependent experimental data and the causal inference from the machine learning framework. This work provided a vivid example of how the artificial intelligence technology, including machine learning, could benefit the materials science research for the discovery. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI期刊
; NI论文
|
学校署名 | 通讯
|
资助项目 | Shenzhen Fundamental Research Foundation[JCYJ20170818103918295][JCYJ20180508162801893]
; National Natural Science Foundation of China[21805234][61875082][2019-INT018,2020-IND002]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000569375400042
|
出版者 | |
EI入藏号 | 20204709515058
|
EI主题词 | Cadmium compounds
; Nanoparticles
; Machine learning
; Morphology
; II-VI semiconductors
; Synthesis (chemical)
|
EI分类号 | Semiconducting Materials:712.1
; Artificial Intelligence:723.4
; Nanotechnology:761
; Physical Chemistry:801.4
; Chemical Reactions:802.2
; Physical Properties of Gases, Liquids and Solids:931.2
; Solid State Physics:933
; Materials Science:951
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186546 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Chinese Univ Hong Kong, Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518172, Guangdong, Peoples R China 2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China 3.Univ Bordeaux, CNRS, F-33608 Pessac, France 4.Hubei Univ, Sch Mat Sci & Engn, Wuhan 430062, Peoples R China |
通讯作者单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Liu, Rulin,Hao, Junjie,Li, Jiagen,et al. Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles[J]. Journal of Physical Chemistry Letters,2020,11(17):7232-7238.
|
APA |
Liu, Rulin.,Hao, Junjie.,Li, Jiagen.,Wang, Shujie.,Liu, Haochen.,...&Zhu, Xi.(2020).Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles.Journal of Physical Chemistry Letters,11(17),7232-7238.
|
MLA |
Liu, Rulin,et al."Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles".Journal of Physical Chemistry Letters 11.17(2020):7232-7238.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
acs.jpclett.0c02115.(4161KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论