中文版 | English
题名

Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network

作者
通讯作者Zhang, Jianfeng
发表日期
2021-04-01
DOI
发表期刊
ISSN
0812-3985
EISSN
1834-7533
卷号52期号:2页码:211-220
摘要

Fresnel zones are helpful for obtaining a high signal-to-noise ratio (S/N)-migrated result. A migrated dip-angle gather provides a simple domain for estimating 2D Fresnel zones for 3D migration. We develop a deep-learning-based technology to automatically estimate Fresnel zones from migrated dip-angle gathers, thus avoiding the cumbersome task of manually checking and modifying the boundaries of the Fresnel zones. A pair of 1D Fresnel zones are incorporated to represent a 2D Fresnel zone in terms of the inline and crossline dip angles because it is difficult to directly extract 2D Fresnel zones from a 2D dip-angle gather. The proposed convolutional neural network (CNN) is established by modifying VGGNet. As picking boundaries of the Fresnel zones is a regression problem, we remove the last soft-max layer from the VGGNet. The last three convolution layers and a pooling layer are also removed because the feature maps are small enough. To improve the contrast and definition, we enhance the features of the reflected events in the dip-angle gather. Data normalisation is carried out to accelerate the training process using a simple-rescaling method before training the modified VGGNet. Field data examples demonstrate the effectiveness and efficiency of the proposed method.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[41574135][41604120]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000558123300001
出版者
EI入藏号
20203209009008
EI主题词
Signal to noise ratio ; Convolution ; Deep learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186569
专题理学院_地球与空间科学系
作者单位
1.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Earth Sci, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
4.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
5.China Univ Geosci, Sch Geophys & Informat Technol, Beijing, Peoples R China
通讯作者单位地球与空间科学系
推荐引用方式
GB/T 7714
Cheng, Qian,Zhang, Jianfeng,Liu, Wei. Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network[J]. Exploration Geophysics,2021,52(2):211-220.
APA
Cheng, Qian,Zhang, Jianfeng,&Liu, Wei.(2021).Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network.Exploration Geophysics,52(2),211-220.
MLA
Cheng, Qian,et al."Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network".Exploration Geophysics 52.2(2021):211-220.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Qian]的文章
[Zhang, Jianfeng]的文章
[Liu, Wei]的文章
百度学术
百度学术中相似的文章
[Cheng, Qian]的文章
[Zhang, Jianfeng]的文章
[Liu, Wei]的文章
必应学术
必应学术中相似的文章
[Cheng, Qian]的文章
[Zhang, Jianfeng]的文章
[Liu, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。