题名 | Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network |
作者 | |
通讯作者 | Zhang, Jianfeng |
发表日期 | 2021-04-01
|
DOI | |
发表期刊 | |
ISSN | 0812-3985
|
EISSN | 1834-7533
|
卷号 | 52期号:2页码:211-220 |
摘要 | Fresnel zones are helpful for obtaining a high signal-to-noise ratio (S/N)-migrated result. A migrated dip-angle gather provides a simple domain for estimating 2D Fresnel zones for 3D migration. We develop a deep-learning-based technology to automatically estimate Fresnel zones from migrated dip-angle gathers, thus avoiding the cumbersome task of manually checking and modifying the boundaries of the Fresnel zones. A pair of 1D Fresnel zones are incorporated to represent a 2D Fresnel zone in terms of the inline and crossline dip angles because it is difficult to directly extract 2D Fresnel zones from a 2D dip-angle gather. The proposed convolutional neural network (CNN) is established by modifying VGGNet. As picking boundaries of the Fresnel zones is a regression problem, we remove the last soft-max layer from the VGGNet. The last three convolution layers and a pooling layer are also removed because the feature maps are small enough. To improve the contrast and definition, we enhance the features of the reflected events in the dip-angle gather. Data normalisation is carried out to accelerate the training process using a simple-rescaling method before training the modified VGGNet. Field data examples demonstrate the effectiveness and efficiency of the proposed method. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[41574135][41604120]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:000558123300001
|
出版者 | |
EI入藏号 | 20203209009008
|
EI主题词 | Signal to noise ratio
; Convolution
; Deep learning
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186569 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing, Peoples R China 2.Chinese Acad Sci, Inst Earth Sci, Beijing, Peoples R China 3.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China 4.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China 5.China Univ Geosci, Sch Geophys & Informat Technol, Beijing, Peoples R China |
通讯作者单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Cheng, Qian,Zhang, Jianfeng,Liu, Wei. Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network[J]. Exploration Geophysics,2021,52(2):211-220.
|
APA |
Cheng, Qian,Zhang, Jianfeng,&Liu, Wei.(2021).Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network.Exploration Geophysics,52(2),211-220.
|
MLA |
Cheng, Qian,et al."Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network".Exploration Geophysics 52.2(2021):211-220.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论