中文版 | English
题名

Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning

作者
通讯作者Yang, Jianlong
发表日期
2020-06-15
DOI
发表期刊
ISSN
2578-7519
卷号3期号:6页码:1664-1678
摘要
Optical coherence tomography angiography (OCTA) requires high transverse sampling density for visualizing retinal and choroidal capillaries. Low transverse sampling causes digital resolution degradation, such as the angiograms in wide-field OCTA. In this paper, we propose to address this problem using deep learning. We conducted extensive experiments on converting the centrally cropped 3 x 3 mm(2) field of view (FOV) of the 8 x 8 mm(2) foveal OCTA images (a sampling density of 22.9 mu m) to the native 3 x 3 mm(2) en face OCTA images (a sampling density of 12.2 mu m). We employed a cycle-consistent adversarial network architecture in this conversion. The quantitative analysis using the perceptual similarity measures shows the generated OCTA images are closer to the native 3 x 3 mm(2) scans. Besides, the results show the proposed method could also enhance the signal-to-noise ratio. We further applied our method to enhance diseased cases and calculate vascular biomarkers, which demonstrates its generalization performance and clinical perspective. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
其他
资助项目
Ningbo "2025 ST Megaprojects"[2019B10033][2019B10061]
WOS研究方向
Optics
WOS类目
Optics
WOS记录号
WOS:000561899900007
出版者
EI入藏号
20203609124230
EI主题词
E-learning ; Network architecture ; Angiography ; Deep learning ; Signal to noise ratio
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186574
专题工学院_计算机科学与工程系
作者单位
1.Guizhou Univ, Elect Engn Coll, Guiyang, Guizhou, Peoples R China
2.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Beijing, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Ting,Yang, Jianlong,Zhou, Kang,et al. Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning[J]. OSA Continuum,2020,3(6):1664-1678.
APA
Zhou, Ting.,Yang, Jianlong.,Zhou, Kang.,Fang, Liyang.,Hu, Yan.,...&Liu, Jiang.(2020).Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning.OSA Continuum,3(6),1664-1678.
MLA
Zhou, Ting,et al."Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning".OSA Continuum 3.6(2020):1664-1678.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou, Ting]的文章
[Yang, Jianlong]的文章
[Zhou, Kang]的文章
百度学术
百度学术中相似的文章
[Zhou, Ting]的文章
[Yang, Jianlong]的文章
[Zhou, Kang]的文章
必应学术
必应学术中相似的文章
[Zhou, Ting]的文章
[Yang, Jianlong]的文章
[Zhou, Kang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。