题名 | Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning |
作者 | |
通讯作者 | Yang, Jianlong |
发表日期 | 2020-06-15
|
DOI | |
发表期刊 | |
ISSN | 2578-7519
|
卷号 | 3期号:6页码:1664-1678 |
摘要 | Optical coherence tomography angiography (OCTA) requires high transverse sampling density for visualizing retinal and choroidal capillaries. Low transverse sampling causes digital resolution degradation, such as the angiograms in wide-field OCTA. In this paper, we propose to address this problem using deep learning. We conducted extensive experiments on converting the centrally cropped 3 x 3 mm(2) field of view (FOV) of the 8 x 8 mm(2) foveal OCTA images (a sampling density of 22.9 mu m) to the native 3 x 3 mm(2) en face OCTA images (a sampling density of 12.2 mu m). We employed a cycle-consistent adversarial network architecture in this conversion. The quantitative analysis using the perceptual similarity measures shows the generated OCTA images are closer to the native 3 x 3 mm(2) scans. Besides, the results show the proposed method could also enhance the signal-to-noise ratio. We further applied our method to enhance diseased cases and calculate vascular biomarkers, which demonstrates its generalization performance and clinical perspective. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Ningbo "2025 ST Megaprojects"[2019B10033][2019B10061]
|
WOS研究方向 | Optics
|
WOS类目 | Optics
|
WOS记录号 | WOS:000561899900007
|
出版者 | |
EI入藏号 | 20203609124230
|
EI主题词 | E-learning
; Network architecture
; Angiography
; Deep learning
; Signal to noise ratio
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Information Theory and Signal Processing:716.1
; Optical Devices and Systems:741.3
; Imaging Techniques:746
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186574 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Guizhou Univ, Elect Engn Coll, Guiyang, Guizhou, Peoples R China 2.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Beijing, Peoples R China 3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Zhou, Ting,Yang, Jianlong,Zhou, Kang,et al. Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning[J]. OSA Continuum,2020,3(6):1664-1678.
|
APA |
Zhou, Ting.,Yang, Jianlong.,Zhou, Kang.,Fang, Liyang.,Hu, Yan.,...&Liu, Jiang.(2020).Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning.OSA Continuum,3(6),1664-1678.
|
MLA |
Zhou, Ting,et al."Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning".OSA Continuum 3.6(2020):1664-1678.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论