中文版 | English
题名

Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion

作者
通讯作者Wu, Ed X.
发表日期
2020-09-23
DOI
发表期刊
ISSN
0740-3194
EISSN
1522-2594
卷号85页码:897-911
摘要
Purpose To provide joint calibrationless parallel imaging reconstruction of highly accelerated multislice 2D MR k-space data. Methods Adjacent image slices in multislice MR data have similar coil sensitivity maps, spatial support, and image content. Such similarities can be utilized to improve image quality by reconstructing multiple slices jointly with low-rank tensor completion. Specifically, the multichannel k-space data from multiple slices are constructed into a block-wise Hankel tensor and iteratively updated by promoting tensor low-rankness through higher-order SVD. This multislice block-wise Hankel tensor completion was implemented for 2D spiral and Cartesian k-space undersampling where sampling patterns vary between adjacent slices. The approach was evaluated with human brain MR data and compared to the traditional single-slice simultaneous autocalibrating and k-space estimation reconstruction. Results The proposed multislice block-wise Hankel tensor completion approach robustly reconstructed highly undersampled multislice 2D spiral and Cartesian data. It produced substantially lower level of artifacts compared to the traditional single-slice simultaneous autocalibrating and k-space estimation reconstruction. Quantitative evaluation using error maps and root mean square error demonstrated its significantly improved performance in terms of residual artifacts and root mean square error. Conclusion Our proposed multislice block-wise Hankel tensor completion method exploits the similar coil sensitivity and image content within multislice MR data through a tensor completion framework. It offers a new and effective approach to acquire and reconstruct highly undersampled multislice MR data in a calibrationless manner.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Hong Kong Research Grant Council[R7003-19/C7048-16G/HKU17112120][HKU17103819/HKU17104020] ; Guangdong Key Technologies for Treatment of Brain Disorders[2018B030332001] ; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund[2019008] ; HKU Seed Fund for Basic Research[104005866]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000571971000001
出版者
EI入藏号
20203909233022
EI主题词
Iterative methods ; Image enhancement ; Errors ; Mean square error ; Image reconstruction
EI分类号
Algebra:921.1 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186604
专题工学院_电子与电气工程系
作者单位
1.Univ Hong Kong, Lab Biomed Imaging & Signal Proc, Hong Kong, Peoples R China
2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
4.Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
5.Tsinghua Univ, Dept Biomed Engn, Ctr Biomed Imaging Res, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yilong,Yi, Zheyuan,Zhao, Yujiao,et al. Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion[J]. MAGNETIC RESONANCE IN MEDICINE,2020,85:897-911.
APA
Liu, Yilong.,Yi, Zheyuan.,Zhao, Yujiao.,Chen, Fei.,Feng, Yanqiu.,...&Wu, Ed X..(2020).Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion.MAGNETIC RESONANCE IN MEDICINE,85,897-911.
MLA
Liu, Yilong,et al."Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion".MAGNETIC RESONANCE IN MEDICINE 85(2020):897-911.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Yilong]的文章
[Yi, Zheyuan]的文章
[Zhao, Yujiao]的文章
百度学术
百度学术中相似的文章
[Liu, Yilong]的文章
[Yi, Zheyuan]的文章
[Zhao, Yujiao]的文章
必应学术
必应学术中相似的文章
[Liu, Yilong]的文章
[Yi, Zheyuan]的文章
[Zhao, Yujiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。