题名 | Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion |
作者 | |
通讯作者 | Wu, Ed X. |
发表日期 | 2020-09-23
|
DOI | |
发表期刊 | |
ISSN | 0740-3194
|
EISSN | 1522-2594
|
卷号 | 85页码:897-911 |
摘要 | Purpose To provide joint calibrationless parallel imaging reconstruction of highly accelerated multislice 2D MR k-space data. Methods Adjacent image slices in multislice MR data have similar coil sensitivity maps, spatial support, and image content. Such similarities can be utilized to improve image quality by reconstructing multiple slices jointly with low-rank tensor completion. Specifically, the multichannel k-space data from multiple slices are constructed into a block-wise Hankel tensor and iteratively updated by promoting tensor low-rankness through higher-order SVD. This multislice block-wise Hankel tensor completion was implemented for 2D spiral and Cartesian k-space undersampling where sampling patterns vary between adjacent slices. The approach was evaluated with human brain MR data and compared to the traditional single-slice simultaneous autocalibrating and k-space estimation reconstruction. Results The proposed multislice block-wise Hankel tensor completion approach robustly reconstructed highly undersampled multislice 2D spiral and Cartesian data. It produced substantially lower level of artifacts compared to the traditional single-slice simultaneous autocalibrating and k-space estimation reconstruction. Quantitative evaluation using error maps and root mean square error demonstrated its significantly improved performance in terms of residual artifacts and root mean square error. Conclusion Our proposed multislice block-wise Hankel tensor completion method exploits the similar coil sensitivity and image content within multislice MR data through a tensor completion framework. It offers a new and effective approach to acquire and reconstruct highly undersampled multislice MR data in a calibrationless manner. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Hong Kong Research Grant Council[R7003-19/C7048-16G/HKU17112120][HKU17103819/HKU17104020]
; Guangdong Key Technologies for Treatment of Brain Disorders[2018B030332001]
; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund[2019008]
; HKU Seed Fund for Basic Research[104005866]
|
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000571971000001
|
出版者 | |
EI入藏号 | 20203909233022
|
EI主题词 | Iterative methods
; Image enhancement
; Errors
; Mean square error
; Image reconstruction
|
EI分类号 | Algebra:921.1
; Numerical Methods:921.6
; Mathematical Statistics:922.2
|
ESI学科分类 | CLINICAL MEDICINE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186604 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Univ Hong Kong, Lab Biomed Imaging & Signal Proc, Hong Kong, Peoples R China 2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China 3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 4.Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China 5.Tsinghua Univ, Dept Biomed Engn, Ctr Biomed Imaging Res, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 |
Liu, Yilong,Yi, Zheyuan,Zhao, Yujiao,et al. Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion[J]. MAGNETIC RESONANCE IN MEDICINE,2020,85:897-911.
|
APA |
Liu, Yilong.,Yi, Zheyuan.,Zhao, Yujiao.,Chen, Fei.,Feng, Yanqiu.,...&Wu, Ed X..(2020).Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion.MAGNETIC RESONANCE IN MEDICINE,85,897-911.
|
MLA |
Liu, Yilong,et al."Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion".MAGNETIC RESONANCE IN MEDICINE 85(2020):897-911.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论