中文版 | English
题名

Evolutionary computation for solving search-based data analytics problems

作者
通讯作者Ma, Lianbo
发表日期
2020-08
DOI
发表期刊
ISSN
0269-2821
EISSN
1573-7462
摘要
Automatic extracting of knowledge from massive data samples, i.e., big data analytics (BDA), has emerged as a vital task in almost all scientific research fields. The BDA problems are rather difficult to solve due to their large-scale, high-dimensional, and dynamic properties, while the problems with small data are usually hard to handle due to insufficient data samples and incomplete information. Such difficulties lead to the search-based data analytics problem, where a data analysis task is modeled as a complex, dynamic, and computationally expensive optimization problem and then solved by using an iterative algorithm. In this paper, we intend to present an extensive and in-depth discussion on the utilizing of evolutionary computation (EC) based optimization methods [including evolutionary algorithms (EAs) and swarm intelligence (SI)] for solving search-based data analysis problems. Then, as an example for illustration, we provide a comprehensive review of the applications of state-of-the-art EC methods for different types of data mining problems in bioinformatics. Here, the detailed analysis and discussion are conducted on three types of data samples, which include sequences data, network data, and image data. Finally, we survey the challenges faced by EC methods and the trend for future directions. Based on the applications of EC methods for search-based data analysis problems involving inexact and uncertain information, the insights of data analytics are able to understand better, and more efficient algorithms could be designed to solve real-world complex BDA problems.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61806119][61672334][61761136008][61773103] ; Natural Science Basic Research Plan In Shaanxi Province of China[2019JM-320] ; Fundamental Research Funds for the Central Universities[GK202003078]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000554454900001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:36
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186626
专题工学院_计算机科学与工程系
作者单位
1.Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
2.Northeastern Univ, Coll Software, Shenyang 110819, Peoples R China
3.Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Shi,Ma, Lianbo,Lu, Hui,et al. Evolutionary computation for solving search-based data analytics problems[J]. ARTIFICIAL INTELLIGENCE REVIEW,2020.
APA
Cheng, Shi,Ma, Lianbo,Lu, Hui,Lei, Xiujuan,&Shi, Yuhui.(2020).Evolutionary computation for solving search-based data analytics problems.ARTIFICIAL INTELLIGENCE REVIEW.
MLA
Cheng, Shi,et al."Evolutionary computation for solving search-based data analytics problems".ARTIFICIAL INTELLIGENCE REVIEW (2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Shi]的文章
[Ma, Lianbo]的文章
[Lu, Hui]的文章
百度学术
百度学术中相似的文章
[Cheng, Shi]的文章
[Ma, Lianbo]的文章
[Lu, Hui]的文章
必应学术
必应学术中相似的文章
[Cheng, Shi]的文章
[Ma, Lianbo]的文章
[Lu, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。