中文版 | English
题名

Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images

作者
通讯作者Zhang, Dan; Zhao, Yitian
发表日期
2020-07
DOI
发表期刊
ISSN
2076-3417
EISSN
2076-3417
卷号10期号:14
摘要

The tortuosity changes of curvilinear anatomical organs such as nerve fibers or vessels have a close relationship with a number of diseases. Therefore, the automatic estimation and representation of the tortuosity is desired in medical image for such organs. In this paper, an automated framework for tortuosity estimation is proposed for corneal nerve and retinal vessel images. First, the weighted local phase tensor-based enhancement method is employed and the curvilinear structure is extracted from raw image. For each curvilinear structure with a different position and orientation, the curvature is measured by the exponential curvature estimation in the 3D space. Then, the tortuosity of an image is calculated as the weighted average of all the curvilinear structures. Our proposed framework has been evaluated on two corneal nerve fiber datasets and one retinal vessel dataset. Experiments on three curvilinear organ datasets demonstrate that our proposed tortuosity estimation method achieves a promising performance compared with other state-of-the-art methods in terms of accuracy and generality. In our nerve fiber dataset, the method achieved overall accuray of 0.820, and 0.734, 0.881 for sensitivity and specificity, respectively. The proposed method also achieved Spearman correlation scores 0.945 and 0.868 correlated with tortuosity grading ground truth for arteries and veins in the retinal vessel dataset. Furthermore, the manual labeled 403 corneal nerve fiber images with different levels of tortuosity, and all of them are also released for public access for further research.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Zhejiang Provincial Natural Science Foundation of China[LZ19F010001] ; Zhejiang Provincial Key Research and Development Program[2020C030360] ; Chinese Postdoctoral Science Foundation[2018M640578] ; National Natural Science Foundation of China[61906181] ; Ningbo 2025 Science and Technology Major Projects[2019B10033][2019B10061] ; Guizhou Provincial Joint Funds[LH[2017]7007] ; Ningbo Natural Science Foundation[2018A610055] ; Zhejiang Postdoctoral Scientific Research Project[ZJ2019167]
WOS研究方向
Chemistry ; Engineering ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号
WOS:000554183600001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186687
专题工学院_计算机科学与工程系
作者单位
1.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
2.Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90033 USA
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Chen, Honghan,Chen, Bang,Zhang, Dan,et al. Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images[J]. Applied Sciences-Basel,2020,10(14).
APA
Chen, Honghan,Chen, Bang,Zhang, Dan,Zhang, Jiong,Liu, Jiang,&Zhao, Yitian.(2020).Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images.Applied Sciences-Basel,10(14).
MLA
Chen, Honghan,et al."Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images".Applied Sciences-Basel 10.14(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Automatic Tortuosity(6108KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Honghan]的文章
[Chen, Bang]的文章
[Zhang, Dan]的文章
百度学术
百度学术中相似的文章
[Chen, Honghan]的文章
[Chen, Bang]的文章
[Zhang, Dan]的文章
必应学术
必应学术中相似的文章
[Chen, Honghan]的文章
[Chen, Bang]的文章
[Zhang, Dan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images.pdf
格式: Adobe PDF
文件名: Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。