题名 | Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing |
作者 | |
通讯作者 | Zhong, Xiangli; Huang, Mingqiang; Li, Jiangyu |
发表日期 | 2020-08-31
|
DOI | |
发表期刊 | |
ISSN | 0003-6951
|
EISSN | 1077-3118
|
卷号 | 117期号:9 |
摘要 | Neuromorphic computing has the potential to accelerate high performance parallel and low power in-memory computation, artificial intelligence, and adaptive learning. Despite emulating the basic functions of biological synapses well, the existing artificial electronic synaptic devices have yet to match the softness, robustness, and ultralow power consumption of the brain. Here, we demonstrate an all-inorganic flexible artificial synapse enabled by a ferroelectric field effect transistor based on mica. The device not only exhibits excellent electrical pulse modulated conductance updating for synaptic functions but also shows remarkable mechanical flexibility and high temperature reliability, making robust neuromorphic computation possible under external disturbances such as stress and heating. Based on its linear, repeatable, and stable long-term plasticity, we simulate an artificial neural network for the Modified National Institute of Standards and Technology handwritten digit recognition with an accuracy of 94.4%. This work provides a promising way to enable flexible, low-power, robust, and highly efficient neuromorphic computation that mimics the brain. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI期刊
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[51902337]
; Shenzhen Science and Technology Innovation Committee[KQTD20170810160424889][JCYJ20170818163902553][JCYJ20170818155813437]
; Key-Area Research and Development Program of Guangdong Province[2018B010109009]
; Guangdong Science and Technology Innovation Committee[2019A1515111142]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Applied
|
WOS记录号 | WOS:000568858800001
|
出版者 | |
EI入藏号 | 20203809188295
|
EI主题词 | Mica
; Ferroelectricity
; Field effect transistors
; Neural networks
; Computing power
|
EI分类号 | Minerals:482.2
; Electricity: Basic Concepts and Phenomena:701.1
; Semiconductor Devices and Integrated Circuits:714.2
; Computer Peripheral Equipment:722.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:67
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186697 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Peoples R China 2.Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China 3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China |
通讯作者单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhong, Gaokuo,Zi, Mengfei,Ren, Chuanlai,et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing[J]. APPLIED PHYSICS LETTERS,2020,117(9).
|
APA |
Zhong, Gaokuo.,Zi, Mengfei.,Ren, Chuanlai.,Xiao, Qun.,Tang, Mingkai.,...&Li, Jiangyu.(2020).Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing.APPLIED PHYSICS LETTERS,117(9).
|
MLA |
Zhong, Gaokuo,et al."Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing".APPLIED PHYSICS LETTERS 117.9(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论