中文版 | English
题名

Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing

作者
通讯作者Zhong, Xiangli; Huang, Mingqiang; Li, Jiangyu
发表日期
2020-08-31
DOI
发表期刊
ISSN
0003-6951
EISSN
1077-3118
卷号117期号:9
摘要
Neuromorphic computing has the potential to accelerate high performance parallel and low power in-memory computation, artificial intelligence, and adaptive learning. Despite emulating the basic functions of biological synapses well, the existing artificial electronic synaptic devices have yet to match the softness, robustness, and ultralow power consumption of the brain. Here, we demonstrate an all-inorganic flexible artificial synapse enabled by a ferroelectric field effect transistor based on mica. The device not only exhibits excellent electrical pulse modulated conductance updating for synaptic functions but also shows remarkable mechanical flexibility and high temperature reliability, making robust neuromorphic computation possible under external disturbances such as stress and heating. Based on its linear, repeatable, and stable long-term plasticity, we simulate an artificial neural network for the Modified National Institute of Standards and Technology handwritten digit recognition with an accuracy of 94.4%. This work provides a promising way to enable flexible, low-power, robust, and highly efficient neuromorphic computation that mimics the brain.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI期刊
学校署名
通讯
资助项目
National Natural Science Foundation of China[51902337] ; Shenzhen Science and Technology Innovation Committee[KQTD20170810160424889][JCYJ20170818163902553][JCYJ20170818155813437] ; Key-Area Research and Development Program of Guangdong Province[2018B010109009] ; Guangdong Science and Technology Innovation Committee[2019A1515111142]
WOS研究方向
Physics
WOS类目
Physics, Applied
WOS记录号
WOS:000568858800001
出版者
EI入藏号
20203809188295
EI主题词
Mica ; Ferroelectricity ; Field effect transistors ; Neural networks ; Computing power
EI分类号
Minerals:482.2 ; Electricity: Basic Concepts and Phenomena:701.1 ; Semiconductor Devices and Integrated Circuits:714.2 ; Computer Peripheral Equipment:722.2 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:67
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186697
专题工学院_材料科学与工程系
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Peoples R China
2.Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位材料科学与工程系
推荐引用方式
GB/T 7714
Zhong, Gaokuo,Zi, Mengfei,Ren, Chuanlai,et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing[J]. APPLIED PHYSICS LETTERS,2020,117(9).
APA
Zhong, Gaokuo.,Zi, Mengfei.,Ren, Chuanlai.,Xiao, Qun.,Tang, Mingkai.,...&Li, Jiangyu.(2020).Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing.APPLIED PHYSICS LETTERS,117(9).
MLA
Zhong, Gaokuo,et al."Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing".APPLIED PHYSICS LETTERS 117.9(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhong, Gaokuo]的文章
[Zi, Mengfei]的文章
[Ren, Chuanlai]的文章
百度学术
百度学术中相似的文章
[Zhong, Gaokuo]的文章
[Zi, Mengfei]的文章
[Ren, Chuanlai]的文章
必应学术
必应学术中相似的文章
[Zhong, Gaokuo]的文章
[Zi, Mengfei]的文章
[Ren, Chuanlai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。