中文版 | English
题名

Efficient uncertainty quantification for permeability of three-dimensional porous media through image analysis and pore-scale simulations

作者
通讯作者Li, Heng
发表日期
2020-08-20
DOI
发表期刊
ISSN
1539-3755
EISSN
1550-2376
卷号102期号:2
摘要
In this paper, we propose an efficient coupled approach for uncertainty quantification of permeability for randomly reconstructed three-dimensional (3D) pore images, where the porosity and two-point correlations of a realistic sandstone sample are honored. The Joshi-Quiblier-Adler approach and Karhunen-Loeve expansion are utilized for quick reconstruction of 3D pore images with reduced random dimensionality. The eigenvalue problem for the covariance matrix of 3D intermediate Gaussian random fields is solved equivalently by a kernel method. Then, the lattice Boltzmann method is adopted to simulate fluid flow in reconstructed pore space and evaluate permeability. Lastly, the sparse polynomial chaos expansion (sparse PCE) integrated with a feature selection method is employed to predict permeability distributions incurred by the randomness in microscopic pore structures. The feature selection process, which is intended to discard redundant basis functions, is carried out by the least absolute shrinkage and selection operator-modified least angle regression along with cross validation. The competence of our proposed approach is validated by the results from Monte Carlo simulation. It reveals that a small number of samples is sufficient for sparse PCE with feature selection to produce convincing results. Then, we utilize our method to quantify the uncertainty of permeability under different porosities and correlation parameters. It is found that the predicted permeability distributions for reconstructed 3D pore images are close to experimental measurements of Berea sandstones in the literature. In addition, the results show that porosity and correlation length are the critical influence factors for the uncertainty of permeability.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Science and Technology Major Project of China[2017ZX05039-005]
WOS研究方向
Physics
WOS类目
Physics, Fluids & Plasmas ; Physics, Mathematical
WOS记录号
WOS:000564799000002
出版者
EI入藏号
20204009298930
EI主题词
Sandstone ; Flow of fluids ; Monte Carlo methods ; Gaussian distribution ; Image reconstruction ; Intelligent systems ; Covariance matrix ; Feature extraction ; Eigenvalues and eigenfunctions ; Pore structure ; Uncertainty analysis
EI分类号
Minerals:482.2 ; Fluid Flow, General:631.1 ; Artificial Intelligence:723.4 ; Mathematics:921 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Physical Properties of Gases, Liquids and Solids:931.2
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186699
专题工学院_环境科学与工程学院
作者单位
1.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
2.China Univ Geosci, Sch Earth Resources, Wuhan 730074, Peoples R China
3.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Lei,Li, Heng,Meng, Jin,et al. Efficient uncertainty quantification for permeability of three-dimensional porous media through image analysis and pore-scale simulations[J]. PHYSICAL REVIEW E,2020,102(2).
APA
Zhao, Lei,Li, Heng,Meng, Jin,&Zhang, Dongxiao.(2020).Efficient uncertainty quantification for permeability of three-dimensional porous media through image analysis and pore-scale simulations.PHYSICAL REVIEW E,102(2).
MLA
Zhao, Lei,et al."Efficient uncertainty quantification for permeability of three-dimensional porous media through image analysis and pore-scale simulations".PHYSICAL REVIEW E 102.2(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Lei]的文章
[Li, Heng]的文章
[Meng, Jin]的文章
百度学术
百度学术中相似的文章
[Zhao, Lei]的文章
[Li, Heng]的文章
[Meng, Jin]的文章
必应学术
必应学术中相似的文章
[Zhao, Lei]的文章
[Li, Heng]的文章
[Meng, Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。