中文版 | English
题名

Spatio-temporal variation and daily prediction of PM2.5 concentration in world-class urban agglomerations of China

作者
通讯作者Ye, Bin
发表日期
2020-09-08
DOI
发表期刊
ISSN
0269-4042
EISSN
1573-2983
卷号43期号:1
摘要
The contradiction between the development of urban agglomerations and ecological protection has long been a challenging issue. China has experienced an astonishing expansion of its urban scale in the past 40 years, and nearly 783 million of the nation's people now live in cities. Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta have been prioritized to become world-class clusters by 2020. The health effects of air pollution in these three urban agglomerations are becoming increasingly formidable. Given these conditions, using the daily mean PM(2.5)concentration in 40 cities from January 2014 to December 2016, this research explored the spatial-temporal characteristics of PM(2.5)concentrations in these three urban agglomerations. The annual mean PM(2.5)concentrations in Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta are 35.39 mu g/m(3), 53.72 mu g/m(3)and 78.54 mu g/m(3), respectively. Compared with the other two urban agglomerations, abundant rainfall causes the Pearl River Delta to have the lowest PM(2.5)level. Furthermore, a general regression neural network (GRNN) method is developed to predict the PM(2.5)concentration in these clusters on the second day, with inputs including the average, maximum and minimum temperature; average, maximum and minimum atmosphere; total rainfall; average humidity; average and maximum wind speed; and the PM(2.5)concentration measured 1 day ahead. The results indicate that the GRNN method can precisely predict the concentration level in these clusters, and it is especially useful for the Pearl River Delta, as the underlying influence mechanism is more specified in this cluster than in the others. Importantly, this 1-day-ahead forecasting of PM(2.5)concentrations can raise awareness among the public to improve their precautionary behaviours and help urban planners to provide corresponding support.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
China Postdoctoral Science Foundation[2019M650733] ; National Natural Science Foundation of China[71803074] ; High-level Special Funding of the Southern University of Science and Technology[G02296302][G02296402]
WOS研究方向
Engineering ; Environmental Sciences & Ecology ; Public, Environmental & Occupational Health ; Water Resources
WOS类目
Engineering, Environmental ; Environmental Sciences ; Public, Environmental & Occupational Health ; Water Resources
WOS记录号
WOS:000567373600002
出版者
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186709
专题工学院_环境科学与工程学院
作者单位
1.Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
3.York Univ, Dept Econ, N York, ON M3J 1P3, Canada
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Yan, Dan,Kong, Ying,Ye, Bin,et al. Spatio-temporal variation and daily prediction of PM2.5 concentration in world-class urban agglomerations of China[J]. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH,2020,43(1).
APA
Yan, Dan,Kong, Ying,Ye, Bin,&Xiang, Haitao.(2020).Spatio-temporal variation and daily prediction of PM2.5 concentration in world-class urban agglomerations of China.ENVIRONMENTAL GEOCHEMISTRY AND HEALTH,43(1).
MLA
Yan, Dan,et al."Spatio-temporal variation and daily prediction of PM2.5 concentration in world-class urban agglomerations of China".ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 43.1(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yan, Dan]的文章
[Kong, Ying]的文章
[Ye, Bin]的文章
百度学术
百度学术中相似的文章
[Yan, Dan]的文章
[Kong, Ying]的文章
[Ye, Bin]的文章
必应学术
必应学术中相似的文章
[Yan, Dan]的文章
[Kong, Ying]的文章
[Ye, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。