中文版 | English
题名

Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History

作者
通讯作者Zheng, Yan
发表日期
2020-08-04
DOI
发表期刊
ISSN
0013-936X
EISSN
1520-5851
卷号54期号:15页码:9454-9463
摘要
Recent advances in machine learning methods offer the opportunity to improve risk assessment and to decipher factors influencing the spatial variability of groundwater arsenic ([As](gw)). A systematic comparison reveals that boosted regression trees (BRT) and random forest (RF) outperform logistic regression. The probability of [As](gw), exceeding 5 mu g/L (approximate median value of Bangladesh [As](gw)), 10 mu g/L (WHO provisional guideline value), and 50 mu g/L (Bangladesh drinking water standard) is modeled by BRT and RF methods for Bangladesh and its four subregions demarcated by major rivers. Of the 109 geo-environmental and hydrochemical predictor variables, phosphorus and iron emerge as the most important across spatial scales, consistent with known As mobilization mechanisms. Well depth is significant only when hydrochemical parameters are not considered, consistent with prior studies. A peak of probability of [As](gw). exceedance at similar to 30 m depth is evident in the partial dependence plots (PDPs) for spatial-parameter-only models but not in the equivalent all-parameter models, suggesting that sediment depositional history explains interdependent spatial patterns of groundwater As-P-Fe in Holocene aquifers. The South region exhibits a decrease of probability of [As](gw), exceedance below 150 m depth in PDPs for spatial-parameter-only and all-parameter models, supporting that the deeper Pleistocene aquifer is a low-As water resource.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[41831279][41772265] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA20060402] ; Shenzhen Science and Technology Innovation Commission[KQJSCX20170728163124680]
WOS研究方向
Engineering ; Environmental Sciences & Ecology
WOS类目
Engineering, Environmental ; Environmental Sciences
WOS记录号
WOS:000558753900031
出版者
EI入藏号
20203809188839
EI主题词
Iron compounds ; Potable water ; Decision trees ; Risk assessment ; Aquifers ; Groundwater resources ; Hydrogeology ; Machine learning
EI分类号
Water Resources:444 ; Groundwater:444.2 ; Geology:481.1 ; Artificial Intelligence:723.4 ; Chemical Products Generally:804 ; Accidents and Accident Prevention:914.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:48
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/186751
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Guangdong Prov Key Lab Soil & Groundwater Pollut, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, State Environm Protect Key Lab Integrated Suiface, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
3.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
4.Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Tan, Zhen,Yang, Qiang,Zheng, Yan. Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2020,54(15):9454-9463.
APA
Tan, Zhen,Yang, Qiang,&Zheng, Yan.(2020).Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History.ENVIRONMENTAL SCIENCE & TECHNOLOGY,54(15),9454-9463.
MLA
Tan, Zhen,et al."Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History".ENVIRONMENTAL SCIENCE & TECHNOLOGY 54.15(2020):9454-9463.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tan, Zhen]的文章
[Yang, Qiang]的文章
[Zheng, Yan]的文章
百度学术
百度学术中相似的文章
[Tan, Zhen]的文章
[Yang, Qiang]的文章
[Zheng, Yan]的文章
必应学术
必应学术中相似的文章
[Tan, Zhen]的文章
[Yang, Qiang]的文章
[Zheng, Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。