题名 | Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History |
作者 | |
通讯作者 | Zheng, Yan |
发表日期 | 2020-08-04
|
DOI | |
发表期刊 | |
ISSN | 0013-936X
|
EISSN | 1520-5851
|
卷号 | 54期号:15页码:9454-9463 |
摘要 | Recent advances in machine learning methods offer the opportunity to improve risk assessment and to decipher factors influencing the spatial variability of groundwater arsenic ([As](gw)). A systematic comparison reveals that boosted regression trees (BRT) and random forest (RF) outperform logistic regression. The probability of [As](gw), exceeding 5 mu g/L (approximate median value of Bangladesh [As](gw)), 10 mu g/L (WHO provisional guideline value), and 50 mu g/L (Bangladesh drinking water standard) is modeled by BRT and RF methods for Bangladesh and its four subregions demarcated by major rivers. Of the 109 geo-environmental and hydrochemical predictor variables, phosphorus and iron emerge as the most important across spatial scales, consistent with known As mobilization mechanisms. Well depth is significant only when hydrochemical parameters are not considered, consistent with prior studies. A peak of probability of [As](gw). exceedance at similar to 30 m depth is evident in the partial dependence plots (PDPs) for spatial-parameter-only models but not in the equivalent all-parameter models, suggesting that sediment depositional history explains interdependent spatial patterns of groundwater As-P-Fe in Holocene aquifers. The South region exhibits a decrease of probability of [As](gw), exceedance below 150 m depth in PDPs for spatial-parameter-only and all-parameter models, supporting that the deeper Pleistocene aquifer is a low-As water resource. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[41831279][41772265]
; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA20060402]
; Shenzhen Science and Technology Innovation Commission[KQJSCX20170728163124680]
|
WOS研究方向 | Engineering
; Environmental Sciences & Ecology
|
WOS类目 | Engineering, Environmental
; Environmental Sciences
|
WOS记录号 | WOS:000558753900031
|
出版者 | |
EI入藏号 | 20203809188839
|
EI主题词 | Iron compounds
; Potable water
; Decision trees
; Risk assessment
; Aquifers
; Groundwater resources
; Hydrogeology
; Machine learning
|
EI分类号 | Water Resources:444
; Groundwater:444.2
; Geology:481.1
; Artificial Intelligence:723.4
; Chemical Products Generally:804
; Accidents and Accident Prevention:914.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Systems Science:961
|
ESI学科分类 | ENVIRONMENT/ECOLOGY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:48
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186751 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Southern Univ Sci & Technol, Guangdong Prov Key Lab Soil & Groundwater Pollut, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, State Environm Protect Key Lab Integrated Suiface, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China 3.Peking Univ, Coll Engn, Beijing 100871, Peoples R China 4.Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Tan, Zhen,Yang, Qiang,Zheng, Yan. Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2020,54(15):9454-9463.
|
APA |
Tan, Zhen,Yang, Qiang,&Zheng, Yan.(2020).Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History.ENVIRONMENTAL SCIENCE & TECHNOLOGY,54(15),9454-9463.
|
MLA |
Tan, Zhen,et al."Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History".ENVIRONMENTAL SCIENCE & TECHNOLOGY 54.15(2020):9454-9463.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论