题名 | Dirac fermions in the antiferromagnetic spintronics material CuMnAs |
作者 | |
通讯作者 | Xu, Hu; Zhang, Xiuwen |
共同第一作者 | Xu, Shao-Gang; Chen, Zhong-Jia |
发表日期 | 2020-09-15
|
DOI | |
发表期刊 | |
ISSN | 2469-9950
|
EISSN | 2469-9969
|
卷号 | 102期号:12 |
摘要 | Dirac semimetals (DSMs) are the focus of study as new candidates for topological superconductivity and spintronics. Although the Dirac points are not necessarily associated with crystalline symmetries, the experimentally realized robust DSMs such as Cd3As2 have fourfold-degenerate Dirac points at generic wave vectors on high symmetry line enabled by a fourfold crystalline symmetry. The magnetic counterpart of these robust DSMs remains unknown. On the other hand, the theoretically proposed magnetic DSMs in potential antiferromagnetic (AFM) spintronics materials where both time-reversal (T) and inversion (P) symmetry are broken but their combination PT is preserved have Dirac points on the boundary of the Brillouin zone protected by a low-order twofold crystalline symmetry. Here, combined with first-principles calculations and symmetry analysis, we find the Dirac fermion at generic wave vector on high symmetry line with associated nontrivial surface states in PT-symmetric tetragonal CuMnAs, which is the prototype AFM spintronics material observed in experiments. Furthermore, we reveal the hidden spin textures in this PT-symmetric magnetic system, demonstrating interesting vortex-like spin textures. Our study opens the way for designing robust magnetic DSMs that can serve as an ideal platform to study the interplay of magnetism, Dirac fermions, and spin-orbit interactions, and could stimulate a series of research in the field of topological antiferromagnetic spintronics. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[11674148][11774239][61827815]
; National Key R&D Program of China[2016YFB0700700]
; Shenzhen Science and Technology Innovation Commission[JCYJ20170818093035338][JCYJ20170412110137562][KQTD20170810105439418][KQTD20180412181422399][ZDSYS201707271554071][ZDSYS20170303165926217]
; Natural Science Foundation of SZU[827-000242]
; High-Level University Construction Funds of SZU[860-000002081209]
; Postdoctoral Science Foundation of China[2019M652996]
; Guangdong Natural Science Funds for Distinguished Young Scholars[2017B030306008]
|
WOS研究方向 | Materials Science
; Physics
|
WOS类目 | Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:000569264600002
|
出版者 | |
EI入藏号 | 20204309383954
|
EI主题词 | Calculations
; Antiferromagnetic materials
; Spintronics
; Manganese alloys
; Cadmium compounds
; Textures
; Arsenic compounds
; Topology
|
EI分类号 | Manganese and Alloys:543.2
; Magnetism: Basic Concepts and Phenomena:701.2
; Magnetic Materials:708.4
; Magnetoelectronics (Spintronics):762
; Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186755 |
专题 | 理学院_物理系 |
作者单位 | 1.Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Flexible Memory Mat & Devices, Shenzhen 518060, Peoples R China 2.Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China 3.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 4.South China Univ Technol, Dept Phys, Guangzhou 510640, Peoples R China |
通讯作者单位 | 物理系 |
推荐引用方式 GB/T 7714 |
Xu, Shao-Gang,Chen, Zhong-Jia,Chen, Xin-Bo,et al. Dirac fermions in the antiferromagnetic spintronics material CuMnAs[J]. PHYSICAL REVIEW B,2020,102(12).
|
APA |
Xu, Shao-Gang,Chen, Zhong-Jia,Chen, Xin-Bo,Zhao, Yu-Jun,Xu, Hu,&Zhang, Xiuwen.(2020).Dirac fermions in the antiferromagnetic spintronics material CuMnAs.PHYSICAL REVIEW B,102(12).
|
MLA |
Xu, Shao-Gang,et al."Dirac fermions in the antiferromagnetic spintronics material CuMnAs".PHYSICAL REVIEW B 102.12(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论