题名 | Convexification for an inverse parabolic problem |
作者 | |
通讯作者 | Li, Jingzhi; Zhang, Wenlong |
发表日期 | 2020-08
|
DOI | |
发表期刊 | |
ISSN | 0266-5611
|
EISSN | 1361-6420
|
卷号 | 36期号:8 |
摘要 | A convexification-based numerical method for a coefficient inverse problem for a parabolic PDE is presented. The key element of this method is the presence of the so-called Carleman weight function in the numerical scheme. Convergence analysis ensures the global convergence of this method, as opposed to the local convergence of the conventional least squares minimization techniques. Numerical results demonstrate a good performance. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | US Army Research Office[W911NF-19-1-0044]
; NSF of China[11901282][11971221][11731006]
; Shenzhen Sci-Tech Fund[JCYJ20170818153840322][JCYJ20180307151603959][JCYJ20190809150413261]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design Grant[2019B030301001]
|
WOS研究方向 | Mathematics
; Physics
|
WOS类目 | Mathematics, Applied
; Physics, Mathematical
|
WOS记录号 | WOS:000563453900001
|
出版者 | |
EI入藏号 | 20204509450130
|
EI主题词 | Convergence of numerical methods
; Least squares approximations
|
EI分类号 | Numerical Methods:921.6
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:21
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/186779 |
专题 | 理学院_数学系 |
作者单位 | 1.Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA 2.Southern Univ Sci & Technol SUSTech, Dept Math, Shenzhen, Guangdong, Peoples R China |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Klibanov, Michael, V,Li, Jingzhi,Zhang, Wenlong. Convexification for an inverse parabolic problem[J]. INVERSE PROBLEMS,2020,36(8).
|
APA |
Klibanov, Michael, V,Li, Jingzhi,&Zhang, Wenlong.(2020).Convexification for an inverse parabolic problem.INVERSE PROBLEMS,36(8).
|
MLA |
Klibanov, Michael, V,et al."Convexification for an inverse parabolic problem".INVERSE PROBLEMS 36.8(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论