题名 | A general robust t-process regression model |
作者 | |
通讯作者 | Shi,Jian Qing |
发表日期 | 2021-02-01
|
DOI | |
发表期刊 | |
ISSN | 0167-9473
|
EISSN | 1872-7352
|
卷号 | 154 |
摘要 | The Gaussian process regression (GPR) model is well-known to be susceptible to outliers. Robust process regression models based on t-process or other heavy-tailed processes have been developed to address the problem. However, due to the current definitions of heavy-tailed processes, the unknown process regression function and the random errors are always defined jointly. This definition, mainly owing to mix-up of the regression function modeling and the distribution of the random errors, is not justified in many practical problems and thus limits the application of those robust approaches. It also results in a limitation of the statistical properties and robust analysis. A general robust process regression model is proposed by separating the nonparametric regression model from the distribution assumption of the random error. An efficient estimation procedure is developed. It shows that the estimated random-effects are useful in detecting outlying curves. Statistical properties, such as unbiasedness and information consistency, are provided. Numerical studies show that the proposed method is robust against outliers and outlying curves, and has a better performance in prediction compared with the existing models. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[11971457]
; Anhui Provincial Natural Science Foundation[1908085MA06]
; NRF grant of Korea government (MEST)[2019R1A2C1002408]
; Science Original Technology Research Program for Brain Science of Ministry of Science, ICT and Future Planning[NRF-2014M3C7A1062896]
|
WOS研究方向 | Computer Science
; Mathematics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Statistics & Probability
|
WOS记录号 | WOS:000582397000009
|
出版者 | |
EI入藏号 | 20204009301735
|
EI主题词 | Regression analysis
; Statistics
; Numerical methods
; Gaussian noise (electronic)
; Random processes
; Gaussian distribution
|
EI分类号 | Numerical Methods:921.6
; Probability Theory:922.1
; Mathematical Statistics:922.2
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85091861469
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187838 |
专题 | 理学院_统计与数据科学系 理学院 |
作者单位 | 1.Department of Statistics and Finance,Management School,University of Science and Technology of China,Hefei,China 2.Department of Statistics,Pukyong National University,Busan,South Korea 3.Department of Statistics,Seoul National University,Seoul,South Korea 4.Department of Statistics and Data Science,College of Science,Southern University of Science and Technology,Shenzhen,China 5.School of Mathematics,Statistics & Physics,Newcastle University,Newcastle,United Kingdom |
通讯作者单位 | 统计与数据科学系; 理学院 |
推荐引用方式 GB/T 7714 |
Wang,Zhanfeng,Noh,Maengseok,Lee,Youngjo,et al. A general robust t-process regression model[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2021,154.
|
APA |
Wang,Zhanfeng,Noh,Maengseok,Lee,Youngjo,&Shi,Jian Qing.(2021).A general robust t-process regression model.COMPUTATIONAL STATISTICS & DATA ANALYSIS,154.
|
MLA |
Wang,Zhanfeng,et al."A general robust t-process regression model".COMPUTATIONAL STATISTICS & DATA ANALYSIS 154(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12. A general robust(555KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论