中文版 | English
题名

A general robust t-process regression model

作者
通讯作者Shi,Jian Qing
发表日期
2021-02-01
DOI
发表期刊
ISSN
0167-9473
EISSN
1872-7352
卷号154
摘要

The Gaussian process regression (GPR) model is well-known to be susceptible to outliers. Robust process regression models based on t-process or other heavy-tailed processes have been developed to address the problem. However, due to the current definitions of heavy-tailed processes, the unknown process regression function and the random errors are always defined jointly. This definition, mainly owing to mix-up of the regression function modeling and the distribution of the random errors, is not justified in many practical problems and thus limits the application of those robust approaches. It also results in a limitation of the statistical properties and robust analysis. A general robust process regression model is proposed by separating the nonparametric regression model from the distribution assumption of the random error. An efficient estimation procedure is developed. It shows that the estimated random-effects are useful in detecting outlying curves. Statistical properties, such as unbiasedness and information consistency, are provided. Numerical studies show that the proposed method is robust against outliers and outlying curves, and has a better performance in prediction compared with the existing models.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[11971457] ; Anhui Provincial Natural Science Foundation[1908085MA06] ; NRF grant of Korea government (MEST)[2019R1A2C1002408] ; Science Original Technology Research Program for Brain Science of Ministry of Science, ICT and Future Planning[NRF-2014M3C7A1062896]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号
WOS:000582397000009
出版者
EI入藏号
20204009301735
EI主题词
Regression analysis ; Statistics ; Numerical methods ; Gaussian noise (electronic) ; Random processes ; Gaussian distribution
EI分类号
Numerical Methods:921.6 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85091861469
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187838
专题理学院_统计与数据科学系
理学院
作者单位
1.Department of Statistics and Finance,Management School,University of Science and Technology of China,Hefei,China
2.Department of Statistics,Pukyong National University,Busan,South Korea
3.Department of Statistics,Seoul National University,Seoul,South Korea
4.Department of Statistics and Data Science,College of Science,Southern University of Science and Technology,Shenzhen,China
5.School of Mathematics,Statistics & Physics,Newcastle University,Newcastle,United Kingdom
通讯作者单位统计与数据科学系;  理学院
推荐引用方式
GB/T 7714
Wang,Zhanfeng,Noh,Maengseok,Lee,Youngjo,et al. A general robust t-process regression model[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2021,154.
APA
Wang,Zhanfeng,Noh,Maengseok,Lee,Youngjo,&Shi,Jian Qing.(2021).A general robust t-process regression model.COMPUTATIONAL STATISTICS & DATA ANALYSIS,154.
MLA
Wang,Zhanfeng,et al."A general robust t-process regression model".COMPUTATIONAL STATISTICS & DATA ANALYSIS 154(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12. A general robust(555KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhanfeng]的文章
[Noh,Maengseok]的文章
[Lee,Youngjo]的文章
百度学术
百度学术中相似的文章
[Wang,Zhanfeng]的文章
[Noh,Maengseok]的文章
[Lee,Youngjo]的文章
必应学术
必应学术中相似的文章
[Wang,Zhanfeng]的文章
[Noh,Maengseok]的文章
[Lee,Youngjo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。