中文版 | English
题名

A parallel down-up fusion network for salient object detection in optical remote sensing images

作者
通讯作者Cong,Runmin
发表日期
2020-11-20
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号415页码:411-420
摘要
The diverse spatial resolutions, various object types, scales and orientations, and cluttered backgrounds in optical remote sensing images (RSIs) challenge the current salient object detection (SOD) approaches. It is commonly unsatisfactory to directly employ the SOD approaches designed for nature scene images (NSIs) to RSIs. In this paper, we propose a novel Parallel Down-up Fusion network (PDF-Net) for SOD in optical RSIs, which takes full advantage of the in-path low- and high-level features and cross-path multi-resolution features to distinguish diversely scaled salient objects and suppress the cluttered backgrounds. To be specific, keeping a key observation that the salient objects still are salient no matter the resolutions of images are in mind, the PDF-Net takes successive down-sampling to form five parallel paths and perceive scaled salient objects that are commonly existed in optical RSIs. Meanwhile, we adopt the dense connections to take advantage of both low- and high-level information in the same path and build up the relations of cross paths, which explicitly yield strong feature representations. At last, we fuse the multiple-resolution features in parallel paths to combine the benefits of the features with different resolutions, i.e., the high-resolution feature consisting of complete structure and clear details while the low-resolution features highlighting the scaled salient objects. Extensive experiments on the ORSSD dataset demonstrate that the proposed network is superior to the state-of-the-art approaches both qualitatively and quantitatively.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Beijing Nova Program[Z201100006820016] ; National Key Research and Development of China[2018AAA0102100] ; National Natural Science Foundation of China[62002014][61532005][U1936212][61972188] ; China Postdoctoral Science Foundation[2020T130050][2019M660438] ; Fundamental Research Funds for the Central Universities[2019RC040]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000579808700037
出版者
EI入藏号
20204009293127
EI主题词
Signal sampling ; Image fusion ; Deep learning ; Object recognition ; Object detection
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Optical Devices and Systems:741.3 ; Statistical Methods:922
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85091798629
来源库
Scopus
引用统计
被引频次[WOS]:67
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187874
专题工学院_计算机科学与工程系
作者单位
1.School of Electrical and Information Engineering,Tianjin University,Tianjin,300072,China
2.Institute of Information Science,Beijing Jiaotong University,Beijing,100044,China
3.Beijing Key Laboratory of Advanced Information Science and Network Technology,Beijing,100044,China
4.College of Computer Science,Nankai University,Tianjin,300350,China
5.School of Software Engineering,Huazhong University of Science and Technology,Wuhan,430074,China
6.Department of Computer Science,City University of Hong Kong,Kowloon,999077,Hong Kong
7.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Li,Chongyi,Cong,Runmin,Guo,Chunle,et al. A parallel down-up fusion network for salient object detection in optical remote sensing images[J]. NEUROCOMPUTING,2020,415:411-420.
APA
Li,Chongyi.,Cong,Runmin.,Guo,Chunle.,Li,Hua.,Zhang,Chunjie.,...&Zhao,Yao.(2020).A parallel down-up fusion network for salient object detection in optical remote sensing images.NEUROCOMPUTING,415,411-420.
MLA
Li,Chongyi,et al."A parallel down-up fusion network for salient object detection in optical remote sensing images".NEUROCOMPUTING 415(2020):411-420.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Chongyi]的文章
[Cong,Runmin]的文章
[Guo,Chunle]的文章
百度学术
百度学术中相似的文章
[Li,Chongyi]的文章
[Cong,Runmin]的文章
[Guo,Chunle]的文章
必应学术
必应学术中相似的文章
[Li,Chongyi]的文章
[Cong,Runmin]的文章
[Guo,Chunle]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。