题名 | Analog circuit implementation of neurons with multiply-accumulate and relu functions |
作者 | |
通讯作者 | Ye,Terry Tao |
DOI | |
发表日期 | 2020-09-07
|
会议录名称 | |
页码 | 493-498
|
摘要 | Although Artificial Neural Networks (ANNs) are inspired by biological neural systems, most of ANNs today are implemented with digital circuitry and use binary values in computation. In recent years, analog-based neuromorphic system has gained lots of attention as it provides a natural interface for brain-machine interaction. In this paper, we present analog designs of a complete neuron system, where the Multiply-Accumulate (MAC) and Rectified Linear Unit (ReLU) functions are all implemented in analog circuits. The design uses SMIC 55nm standard LP CMOS process node and operates at low supply voltage (1.2 V). The simulation results in SPECTRE demonstrate that the MAC's linear error is no more than 0.5% and total harmonic distortion (THD) is less than 1.6% when the inputs vary from peak (-10 µA) to peak (10 µA) at 10 MHz, the -3dB bandwidth is 288 MHz, the maximum power consumption is 540 µW and the static power consumption is 493 µW under 100MHz input signal frequency. More specifically, our design is resilient to the fluctuation of power supply, which helps to achieve high precision of computation. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203909229991
|
EI主题词 | Timing circuits
; Brain computer interface
; Electric power utilization
; Analog circuits
|
EI分类号 | Electric Power Systems:706.1
; Electronic Circuits:713
; Pulse Circuits:713.4
; Computer Peripheral Equipment:722.2
|
Scopus记录号 | 2-s2.0-85091277247
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187906 |
专题 | 南方科技大学 工学院_电子与电气工程系 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,China 2.Department of Electrical and Electronic Engineering,United States 3.University Key Laboratory of Advanced Wireless Communication of Guangdong Province,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Huang,Yucong,Yang,Zhitao,Zhu,Jianghan,et al. Analog circuit implementation of neurons with multiply-accumulate and relu functions[C],2020:493-498.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论