中文版 | English
题名

Sliding Sketches: A Framework using Time Zones for Data Stream Processing in Sliding Windows

作者
DOI
发表日期
2020-08-23
会议录名称
页码
1015-1025
摘要
Data stream processing has become a hot issue in recent years due to the arrival of big data era. There are three fundamental stream processing tasks: membership query, frequency query and heavy hitter query. While most existing solutions address these queries in fixed windows, this paper focuses on a more challenging task: answering these queries in sliding windows. While most existing solutions address different kinds of queries by using different algorithms, this paper focuses on a generic framework. In this paper, we propose a generic framework, namely Sliding sketches, which can be applied to many existing solutions for the above three queries, and enable them to support queries in sliding windows. We apply our framework to five state-of-the-art sketches for the above three kinds of queries. Theoretical analysis and extensive experimental results show that after using our framework, the accuracy of existing sketches that do not support sliding windows becomes much higher than the corresponding best prior art. We released all the source code at Github.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203709168405
EI主题词
Data streams
EI分类号
Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85090408988
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187928
专题未来网络研究院
作者单位
1.Peking University,Beijing,China
2.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Gou,Xiangyang,He,Long,Zhang,Yinda,et al. Sliding Sketches: A Framework using Time Zones for Data Stream Processing in Sliding Windows[C],2020:1015-1025.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gou,Xiangyang]的文章
[He,Long]的文章
[Zhang,Yinda]的文章
百度学术
百度学术中相似的文章
[Gou,Xiangyang]的文章
[He,Long]的文章
[Zhang,Yinda]的文章
必应学术
必应学术中相似的文章
[Gou,Xiangyang]的文章
[He,Long]的文章
[Zhang,Yinda]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。