中文版 | English
题名

SAM: Self-attention based deep learning method for online traffic classification

作者
通讯作者Li,Qing
DOI
发表日期
2020-08-14
会议录名称
页码
14-20
摘要
Network traffic classification categorizes traffic classes based on protocols (e.g., HTTP or DNS) or applications (e.g., Facebook or Gmail). Its accuracy is a key foundation of some network management tasks like Quality-of-Service (QoS) control, anomaly detection, etc. To further improve the accuracy of traffic classification, recent researches have introduced deep learning based methods. However, most of them utilize the privacy-concerned payload (user data). Besides, they generally do not consider the dependency of bytes in a packet, which we believe can be exploited for the more accurate classification. In this work, we treat the initial bytes of a network packet as a language and propose a novel Self-Attention based Method (SAM) for traffic classification. The average F1-scores of SAM on protocol and application classification are 98.62% and 98.93%. With the higher accuracy of SAM, better QoS and anomaly detection can be met.
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204109313677
EI主题词
Anomaly detection ; E-learning ; Learning systems ; Quality of service
Scopus记录号
2-s2.0-85091998615
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187929
专题未来网络研究院
作者单位
1.Tsinghua University,Peng Cheng Laboratory,China
2.Southern University of Science and Technology,Peng Cheng Laboratory,China
3.University of Melbourne,Australia
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Xie,Guorui,Li,Qing,Jiang,Yong,et al. SAM: Self-attention based deep learning method for online traffic classification[C],2020:14-20.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie,Guorui]的文章
[Li,Qing]的文章
[Jiang,Yong]的文章
百度学术
百度学术中相似的文章
[Xie,Guorui]的文章
[Li,Qing]的文章
[Jiang,Yong]的文章
必应学术
必应学术中相似的文章
[Xie,Guorui]的文章
[Li,Qing]的文章
[Jiang,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。