中文版 | English
题名

Efficient building category classification with fAÇade information from oblique aerial images

作者
通讯作者Xie,X.
DOI
发表日期
2020-08-06
ISSN
1682-1750
会议录名称
卷号
43
期号
B2
页码
1309-1313
摘要
Building category refereed to categorizing structures based on their usage is useful for urban design and management and can provide indexes of population, resource and environment related problems. Currently, the statistics are mainly collected by manual from street data or roughly extracted from remote sensing data which are either laborious or too coarse. With remote sensing data (e.g. satellite and aerial images), buildings can be automatically identified from the top-view, but the detailed categories of single buildings are not recognized. Façade from oblique-view image can greatly help us to identify the categories of buildings, for example, balcony usually exist in resident buildings. Hence, in this paper, we propose an efficient way to classify building categories with the façade information. Firstly, following the texture mapping procedure, each building's façade textures are cropped from oblique images via a perspective transformation. Then, the average colour, the stander deviation in R, G, B channel, and the rectangle Haar-like features are extracted and feed to a further random forest classifier for their category identifications. In the experiment, we manually selected 262 building façades that can be classified into four functional types as: 1) regular residence ; 2) educational building; 3) office ; 4) condominium. The results shows that, with 30% data as training samples, the classification accuracy can reach 0.6 which is promising in real applications and we believe with more sophisticated feature descriptors and classifiers, e.g., neuronal networks, the accuracy can be much higher.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203809212034
EI主题词
Image classification ; Textures ; Buildings ; Decision trees ; Antennas ; Classification (of information) ; Neurons
EI分类号
Buildings and Towers:402 ; Biology:461.9 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
Scopus记录号
2-s2.0-85091116558
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187932
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Artificial Intelligence and Earth Perception Research Center,School of Automation Engineering,University of Electronic Science and Technology of China,China
2.Key Lab of Pollution Ecology and Environmental Engineering,Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang,110016,China
3.Key Lab for Environmental Computation and Sustainability of Liaoning Province,Shenyang,110016,China
4.Department of Compute Science and Engineering,Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Xiao,C.,Xie,X.,Zhang,L.,et al. Efficient building category classification with fAÇade information from oblique aerial images[C],2020:1309-1313.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,C.]的文章
[Xie,X.]的文章
[Zhang,L.]的文章
百度学术
百度学术中相似的文章
[Xiao,C.]的文章
[Xie,X.]的文章
[Zhang,L.]的文章
必应学术
必应学术中相似的文章
[Xiao,C.]的文章
[Xie,X.]的文章
[Zhang,L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。