题名 | Deep Multi-path Low-Light Image Enhancement |
作者 | |
通讯作者 | Zhang,Jianguo |
共同第一作者 | Li,Siyuan |
DOI | |
发表日期 | 2020-08-01
|
会议名称 | 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)
|
ISBN | 978-1-7281-4273-9
|
会议录名称 | |
页码 | 91-96
|
会议日期 | 6-8 Aug. 2020
|
会议地点 | Shenzhen, China
|
摘要 | Noise and color shifts are prone to occur in low-light conditions, which can significantly affect imaging quality. Simply stretching the pixel intensity to improve the illumination level is not able to eliminate noise and color shifts, and it may even lead to artifacts amplification. Various methods have been developed to avoid noise and color shifts in low-light conditions over the past few years. However, most of them may fail to handle different exposure conditions at the same time. In this paper, we propose a novel multi-path convolutional neural network architecture for this task. Luminance and chroma were impacted in two different ways in low-light conditions. By using different well-designed custom networks and loss functions, luminance and chroma can be well restored. Extensive experiments have been performed to demonstrate the superiority of our approach to the state-of-Art methods using multiple metrics under different exposure conditions. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20204109327440
|
EI主题词 | Computer vision
; Color
; Network architecture
; Image enhancement
; Convolutional neural networks
|
EI分类号 | Computer Applications:723.5
; Light/Optics:741.1
; Vision:741.2
|
Scopus记录号 | 2-s2.0-85092162130
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9175551 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187933 |
专题 | 工学院_电子与电气工程系 工学院_计算机科学与工程系 |
作者单位 | 1.Dept. of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen, Guangdong,China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Li,Siyuan,Cheng,Qingsha S.,Zhang,Jianguo. Deep Multi-path Low-Light Image Enhancement[C],2020:91-96.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Deep Multi-path Low-(8915KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论