中文版 | English
题名

Deep Multi-path Low-Light Image Enhancement

作者
通讯作者Zhang,Jianguo
共同第一作者Li,Siyuan
DOI
发表日期
2020-08-01
会议名称
2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)
ISBN
978-1-7281-4273-9
会议录名称
页码
91-96
会议日期
6-8 Aug. 2020
会议地点
Shenzhen, China
摘要

Noise and color shifts are prone to occur in low-light conditions, which can significantly affect imaging quality. Simply stretching the pixel intensity to improve the illumination level is not able to eliminate noise and color shifts, and it may even lead to artifacts amplification. Various methods have been developed to avoid noise and color shifts in low-light conditions over the past few years. However, most of them may fail to handle different exposure conditions at the same time. In this paper, we propose a novel multi-path convolutional neural network architecture for this task. Luminance and chroma were impacted in two different ways in low-light conditions. By using different well-designed custom networks and loss functions, luminance and chroma can be well restored. Extensive experiments have been performed to demonstrate the superiority of our approach to the state-of-Art methods using multiple metrics under different exposure conditions.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204109327440
EI主题词
Computer vision ; Color ; Network architecture ; Image enhancement ; Convolutional neural networks
EI分类号
Computer Applications:723.5 ; Light/Optics:741.1 ; Vision:741.2
Scopus记录号
2-s2.0-85092162130
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9175551
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187933
专题工学院_电子与电气工程系
工学院_计算机科学与工程系
作者单位
1.Dept. of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen, Guangdong,China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
第一作者单位电子与电气工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Li,Siyuan,Cheng,Qingsha S.,Zhang,Jianguo. Deep Multi-path Low-Light Image Enhancement[C],2020:91-96.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Deep Multi-path Low-(8915KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Siyuan]的文章
[Cheng,Qingsha S.]的文章
[Zhang,Jianguo]的文章
百度学术
百度学术中相似的文章
[Li,Siyuan]的文章
[Cheng,Qingsha S.]的文章
[Zhang,Jianguo]的文章
必应学术
必应学术中相似的文章
[Li,Siyuan]的文章
[Cheng,Qingsha S.]的文章
[Zhang,Jianguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。