中文版 | English
题名

A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis

作者
通讯作者Gao,Xin
发表日期
2020-08
DOI
发表期刊
ISSN
1558-254X
卷号39期号:8页码:2638-2652
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
学校署名
其他
EI入藏号
20203409079465
EI主题词
Computer aided diagnosis ; Computerized tomography ; Learning algorithms ; Deep learning ; Nucleic acids ; Three dimensional computer graphics
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Health Care:461.7 ; Data Processing and Image Processing:723.2 ; Machine Learning:723.4.2 ; Computer Applications:723.5 ; Biochemistry:801.2 ; Organic Compounds:804.1
ESI学科分类
CLINICAL MEDICINE
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9115057
引用统计
被引频次[WOS]:121
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187940
专题生命科学学院_生物系
生命科学学院
作者单位
1.Computer,Electrical and Mathematical Sciences and Engineering (CEMSE) Division,Computational Bioscience Research Center (CBRC),King Abdullah University of Science and Technology (KAUST),Thuwal,Saudi Arabia
2.Department of Biology,Southern University of Science and Technology,Shenzhen,China
3.Cancer Systems Biology Center,China-Japan Union Hospital,Jilin University,Changchun,China
4.Peng Cheng Laboratory,Shenzhen,China
5.Heilongjiang Tuomeng Technology Company Ltd.,Harbin,China
6.Department of Computer Tomography,First Affiliated Hospital of Harbin Medical University,Harbin,China
7.Department of Computer Tomography,First Hospital of Harbin Medical University,Harbin,China
8.Institute of Biomedical Engineering and Instrumentation,Hangzhou Dianzi University,Hangzhou,China
9.Oncology Center,King Faisal Specialist Hospital and Research Center,Riyadh,Saudi Arabia
10.Department Medical Imaging,King Faisal Specialist Hospital and Research Center,Riyadh,Saudi Arabia
11.Institute of Information and Computer Engineering,Northeast Forestry University,Harbin,China
推荐引用方式
GB/T 7714
Zhou,Longxi,Li,Zhongxiao,Zhou,Juexiao,et al. A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis[J]. IEEE Transactions on Medical Imaging,2020,39(8):2638-2652.
APA
Zhou,Longxi.,Li,Zhongxiao.,Zhou,Juexiao.,Li,Haoyang.,Chen,Yupeng.,...&Gao,Xin.(2020).A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis.IEEE Transactions on Medical Imaging,39(8),2638-2652.
MLA
Zhou,Longxi,et al."A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis".IEEE Transactions on Medical Imaging 39.8(2020):2638-2652.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Longxi]的文章
[Li,Zhongxiao]的文章
[Zhou,Juexiao]的文章
百度学术
百度学术中相似的文章
[Zhou,Longxi]的文章
[Li,Zhongxiao]的文章
[Zhou,Juexiao]的文章
必应学术
必应学术中相似的文章
[Zhou,Longxi]的文章
[Li,Zhongxiao]的文章
[Zhou,Juexiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。