中文版 | English
题名

Fingerprinting encrypted voice traffic on smart speakers with deep learning

作者
通讯作者Wang,Chenggang
DOI
发表日期
2020-07-08
会议录名称
页码
254-265
摘要
This paper investigates the privacy leakage of smart speakers under an encrypted traffic analysis attack, referred to as voice command fingerprinting. In this attack, an adversary can eavesdrop both outgoing and incoming encrypted voice traffic of a smart speaker, and infers which voice command a user says over encrypted traffic. We first built an automatic voice traffic collection tool and collected two large-scale datasets on two smart speakers, Amazon Echo and Google Home. Then, we implemented proof-of-concept attacks by leveraging deep learning. Our experimental results over the two datasets indicate disturbing privacy concerns. Specifically, compared to 1% accuracy with random guess, our attacks can correctly infer voice commands over encrypted traffic with 92.89% accuracy on Amazon Echo. Despite variances that human voices may cause on outgoing traffic, our proof-of-concept attacks remain effective even only leveraging incoming traffic (i.e., the traffic from the server). This is because the AI-based voice services running on the server side response commands in the same voice and with a deterministic or predictable manner in text, which leave distinguishable pattern over encrypted traffic. We also built a proof-of-concept defense to obfuscate encrypted traffic. Our results show that the defense can effectively mitigate attack accuracy on Amazon Echo to 32.18%.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204109313622
EI主题词
Cellular radio systems ; Cryptography ; Large dataset ; Mobile telecommunication systems ; Network security ; Wireless networks
EI分类号
Radio Systems and Equipment:716.3 ; Computer Software, Data Handling and Applications:723
Scopus记录号
2-s2.0-85091981459
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187941
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Cincinnati,United States
2.Southern University of Science and Technology,China
3.Purdue University,United States
推荐引用方式
GB/T 7714
Wang,Chenggang,Kennedy,Sean,Li,Haipeng,et al. Fingerprinting encrypted voice traffic on smart speakers with deep learning[C],2020:254-265.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Chenggang]的文章
[Kennedy,Sean]的文章
[Li,Haipeng]的文章
百度学术
百度学术中相似的文章
[Wang,Chenggang]的文章
[Kennedy,Sean]的文章
[Li,Haipeng]的文章
必应学术
必应学术中相似的文章
[Wang,Chenggang]的文章
[Kennedy,Sean]的文章
[Li,Haipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。